
Foundations and TrendsR© in
Networking
Vol. 3, No. 1 (2008) 1–125
c© 2009 D. Shah
DOI: 10.1561/1300000014

Gossip Algorithms

By Devavrat Shah

Contents

1 Introduction 3

1.1 NextGen Networks: Through an Algorithmic Lens 5
1.2 The Formal Agenda 6
1.3 Organization 8

2 Preliminaries 11

2.1 Graphs and Random Walks 11
2.2 Mixing Time and Conductance 13
2.3 Some Graph Models 17
2.4 Historical Notes 22

3 Information Dissemination 23

3.1 Setup 23
3.2 Single-Piece Dissemination 24
3.3 Multi-Piece Dissemination 32
3.4 Summary and Historical Notes 39

4 Linear Computation 40

4.1 Setup 40
4.2 Randomized Algorithms and Reversible Random Walks 43

4.3 Deterministic Algorithms and Non-Reversible
Random Walks 51

4.4 Summary 66
4.5 Historical Notes 67

5 Separable Function Computation 69

5.1 Setup 69
5.2 Algorithm 70
5.3 Summary 75
5.4 Historical Notes 77

6 Network Scheduling 78

6.1 Setup 78
6.2 Scheduling Algorithm 81
6.3 Performance of Scheduling Algorithm 84
6.4 Relation to Other Models 89
6.5 Summary 90
6.6 Historical Notes 91

7 Network Convex Optimization 92

7.1 Setup 94
7.2 Algorithm: Description and Performance Analysis 95
7.3 Historical Notes 116

8 Conclusions 118

Acknowledgments 119

Notations and Acronyms 120

References 121

Foundations and TrendsR© in
Networking
Vol. 3, No. 1 (2008) 1–125
c© 2009 D. Shah
DOI: 10.1561/1300000014

Gossip Algorithms

Devavrat Shah

Massachusetts Institute of Technology, Cambridge, MA, USA,
devavrat@mit.edu

Abstract

Unlike the Telephone network or the Internet, many of the next gener-
ation networks are not engineered for the purpose of providing efficient
communication between various networked entities. Examples abound:
sensor networks, peer-to-peer networks, mobile networks of vehicles and
social networks. Indeed, these emerging networks do require algorithms
for communication, computation, or merely spreading information. For
example, estimation algorithms in sensor networks, broadcasting news
through a peer-to-peer network, or viral advertising in a social network.
These networks lack infrastructure; they exhibit unpredictable dynam-
ics and they face stringent resource constraints. Therefore, algorithms
operating within them need to be extremely simple, distributed, robust
against networks dynamics, and efficient in resource utilization.

Gossip algorithms, as the name suggests, are built upon a gossip
or rumor style unreliable, asynchronous information exchange proto-
col. Due to their immense simplicity and wide applicability, this class
of algorithms has emerged as a canonical architectural solution for
the next generation networks. This has led to exciting recent progress
to understand the applicability as well as limitations of the Gossip

algorithms. In this review, we provide a systematic survey of many
of these recent results on Gossip network algorithms. The algorithmic
results described here utilize interdisciplinary tools from Markov chain
theory, Optimization, Percolation, Random graphs, Spectral graph
theory, and Coding.

1
Introduction

The twentieth century has seen a revolution in terms of our ability
to communicate at very long distances at very high speeds. This has
fundamentally changed the way we live in the present world. The devel-
opment of reliable and high-performance massive communication net-
works has been at the heart of this revolution. The telephone networks
and the Internet are prime examples of such large networks. These net-
works were carefully engineered (and are still being engineered) for the
single purpose of providing efficient communication given the available
resources. In contrast to these networks, there has been a sudden emer-
gence of different types of large networks in the past few years where
the primary purpose is not that of providing communication. Examples
of such networks include sensor networks, peer-to-peer (P2P) networks,
mobile ad-hoc networks, and social networks.

A sensor network, made of a large number of unreliable cheap sen-
sors, is usually deployed for the purpose of ‘sensing’, ‘detecting’ or
‘monitoring’ certain events. For example, smoke sensors capable of wire-
less transmission deployed for smoke detection in a large building, or
a collection of interconnected camera sensors deployed for surveillance
in a secure facility. The ability to deploy such networks anywhere with

3

4 Introduction

minimal cost of infrastucture has made them particularly attractive
for these applications. Clearly, the primary purpose of such networks
is to collect and process the sensed information by sensors rather than
provide efficient communication.

The peer-to-peer networks are formed by connecting various users
(e.g., computers or handheld devices) over an already existing network
such as the Internet. Usually such networks are formed with minimal
infrastructural support. The peers (or neighbors) are connected over
an existing network and hence the advantage of using such networks is
not in terms of efficiency of utilizing resources. However, a significant
benefit arises in terms of reduced infrastructural support in situations
like wide information dissemination. For example, in the absence of a
P2P network an Internet content provider (e.g., BBC) needs to main-
tain a high bandwidth ‘server farm’ that ‘streams’ a popular movie or a
TV show to a large number of users simultaneously. In contrast, in the
presence of a P2P network a user is likely to obtain the desired popu-
lar content from a ‘nearby’ peer and thus distributing a large cost of
‘streaming’ from the ‘server farm’ to many ‘peers’. Therefore, such an
architecture can reduce the cost of content dissemination for a content
provider drastically. Of course, it is likely to come at an increased cost
of the network utilization. Now, whether or not the benefits obtained
in terms of reduced infrastructure by utilizing P2P network for a con-
tent provider offset the increased network cost incurred by the network
provider is indeed intriguing both in an engineering and an economic
sense. While the recent trend suggests that it is indeed the case (e.g.,
advent of the BBCiPlayer [70] and adaptation of Korean ISPs [31]),
the equilibrium solution is yet to be reached.

The mobile ad-hoc network formed between vehicles arises in var-
ious scenarios, including future smart cars traveling on road, or fleets
of unmanned aerial vehicles deployed for surveillance. These networks,
by design, are formed for a purpose other than communication. They
need algorithms for the purpose of co-ordination, consensus or flocking
(e.g., see classical work by Tsitsiklis [69], more recently [6, 32, 63]).

Finally, we have noticed a very recent emergence of massive social
networks between individuals connected over a heterogenous collec-
tion of networks. Until recently, an individual’s social network usually

1.1 NextGen Networks: Through an Algorithmic Lens 5

involved only a small number of other acquintances, relatives or
close friends. However, the arrival of ‘social network applications’
(e.g., Orkut, Facebook, etc.) has totally changed the structure of exist-
ing social networks. Specifically, the social network of an individual
now includes many more acquintances than before thanks to these
online applications. Furthermore, the use of handheld devices like smart
phones are likely to create new ways to ‘socialize’ through P2P networks
formed between them in the near future. Naturally, this ‘globalization’
and ‘ubiquitous presence’ of social networks bring many exciting oppor-
tunities along with extreme challenges. To realize these opportunities
and to deal with the challenges, we will need new algorithms with
efficient effective social communication under uncertain environmental
conditions.

1.1 NextGen Networks: Through an Algorithmic Lens

Algorithms are key building blocks of any network architecture. For
example, the Internet provides efficient communication between users
through a collection of algorithms operating at the end-users and inside
the network. Popular instances of such algorithms are the Transmission
Control Protocol (TCP) for congestion control or Border Gateway Pro-
tocol (BGP) for routing. The above discussed emerging or next gen-
eration networks are not designed to provide efficient communication
between the entities or the users networked by them. But, they do
require algorithms to enable their primary applications. For example, a
sensor network may require an estimation algorithm for event detection
given the sensor observations; a P2P network may require a dissemi-
nation algorithm using peer information; a network of aerial vehicles
may need an algorithm to reach consensus to co-ordinate their surveil-
lance efforts, and an advertiser may need a social network algorithm
for efficient ‘viral’ advertisement.

In most of these next generation networks, algorithms usually need
to operate under an ‘adverse’ environment. First of all, since these
networks are not built for providing communication, there is usually
a lack of a reliable network infrastructure. Second, these networks are
highly dynamic in the sense that nodes may join the network, leave the

6 Introduction

network, or even become intermittently unavailable in an unpredictable
manner. Third, the network is usually highly resource constrained in
terms of communication, computation and sometimes energy resources.

The highly constrained environment in which algorithms are oper-
ating suggest that the algorithm must posses certain properties so as
to be implementable in such networks. Specifically, an algorithm oper-
ating at a node of the network should utilize information ‘local’ to the
node and should not expect any static infrastructure. It should attempt
to achieve its task iteratively and by means of asynchronous message
exchanges. The algorithm should be robust against the network dynam-
ics and should not prescribe to any ‘hard-wired’ implementation. And
finally, the algorithm should utilize minimal computational and com-
munication resources by performing few logical operations per iteration
as well as require light-weight data structures. These constraints natu-
rally lead to ‘Gossip’ algorithms, formally described next, as a canonical
algorithmic architectural solution for these next generation networks.

1.2 The Formal Agenda

We shall formally describe the quest for algorithm design for the next
generation networks in this section. This will give rise to the formal
definition of ‘Gossip’ algorithms, which will serve as the canonical
algorithmic solution.

To this end, let us consider a network of n nodes denoted by
V = {1, . . . ,n}. Let E ⊂ V × V denote the set of (bidirectional) links
along which node pairs can communicate. That is, (i, j) ∈ E if and
only if nodes i, j ∈ V can communicate with each other. Let this net-
work graph be denoted by G = (V,E). This network graph G should be
thought of as changing over time in terms of V and E. As the reader
will notice, the algorithms considered here will not utilize any static
property of G and hence will be applicable in the presence of explicit
network dynamics. For simplicity of the exposition, we shall not model
the network dynamics explicitly. Let di denote the degree of node i in
G, i.e., di = |{j ∈ V : (i, j) ∈ E}|. We will assume that the network G is
connected without loss of generality; or else we can focus on different
connected components separately.

1.2 The Formal Agenda 7

We consider a class of algorithms, called ‘Gossip’ algorithms, that
are operating at each of the n nodes of the network. Now, we present
the formal definition of these algorithms.

Definition 1.1(Gossip algorithms). Under a Gossip algorithm, the
operation at any node i ∈ V , must satisfy the following properties:

(1) The algorithm should only utilize information obtained from

its neighbors N (i)
�
= {j ∈ V : (i, j) ∈ E}.

(2) The algorithm performs at most O(di logn) amount of com-
putation per unit time.

(3) Let |Fi| be the amount of storage required at node i to gener-
ate its output. Then the algorithm maintains O(poly(logn) +
|Fi|) amount of storage at node i during its running.

(4) The algorithm does not require synchronization between
node i and its neighbors, N (i).

(5) The eventual outcome of the algorithm is not affected by
‘reasonable’1 changes in N (i) during the course of running
of the algorithm.

We wish to design Gossip algorithms for computing a generic net-
work function. Specifically, let each node have some information, and
let xi denote the information of node i ∈ V . The node i ∈ V wishes
to compute a function fi(x1, . . . ,xn) using a Gossip algorithm. Also, it
would like to obtain a good estimate of fi(x1, . . . ,xn) as quickly as pos-
sible. The question that is central to this survey is that of identifying
the dependence of the computation time of the Gossip algorithm over
the graph structure G and the functions of interest f1, . . . ,fn.

Before we embark on the description and organization of this sur-
vey, some remarks are in order. First, property (3) rules out ‘triv-
ial’ algorithms like first collect values x1, . . . ,xn at each node and

1 By a reasonable change, here we mean dynamics that allow for a possibility of eventual
computation of the desired function in a distributed manner. For example, if a node i
becomes disconnected from the rest of the graph forever, then it will consist of unreasonable
change as per our terminology.

8 Introduction

then compute fi(x1, . . . ,xn) locally for functions like summation, i.e.,
fi(x1, . . . ,xn) =

∑n
k=1 xk. This is because for such a function the length

of the output is O(1) (we treat storage of each distinct number by
unit space) and hence collection of all n items at node i would require
storage Ω(n) which is a violation of property (3). Second, the compu-
tation of complex function (e.g., requiring beyond poly(logn) space)
are beyond this class of algorithms. This is to reflect that the interest
here is in functions that are easily computable, which is usually the
case in the context of network applications. Third, the definition of a
Gossip algorithm here should be interpreted as a rough guideline on the
class of simple algorithms that are revelant rather than a very precise
definition.

1.3 Organization

In the remainder of this survey, we provide a systematic description
of the class of network functions that can be computed by means of
a Gossip algorithm. A salient feature of the analysis of the algorithms
described in this survey is the ability to describe the precise dependance
of computation time on the network graph structure G and the function
of interest. These dependancies are described in terms of ‘spectral-like’
graph properties. Therefore, we start with Preliminaries on graph prop-
erties and some known results that will be useful in the algorithm design
and analysis. These are explained through examples of a collection of
graph models throughout the survey.

The network functions for which we describe Gossip algorithms in
this survey are naturally designed in a ‘layered’ fashion. At the bot-
tom of the layer lies the design of a robust information layer using a
Gossip algorithm. This is described in detail in Information dissemi-
nation. Here we will describe information dissemination Gossip algo-
rithm for both unicast and multicast types of traffic scenarios. We will
describe a natural relation between Percolation on graphs, information
dissemination and certain spectral-like graph properties.

The simplest class of iterative algorithms, built upon an unreliable
information layer, are based on linear dynamics. These algorithms have
been used for solving consensus or multi-agent co-ordination problems

1.3 Organization 9

classically. We provide a detailed account on the optimal design and
analysis of such algorithms in Linear computation. Here, we shall
describe the interplay between Markov chain theory, mixing times and
Gossip algorithms. We also report some advances in the context of
Markov chain theory due to considerations from the viewpoint of Gossip
algorithms.

Linear function computation is an instance of, and essentially equiv-
alent to, separable function computation. The quest for designing the
fastest possible Gossip algorithm, in terms of its dependence on the
graph structure, for separable function computation, which will be
left partly unresolved by the linear dynamics based algorithms, will
be brought to a conclusion in Separable function computation. Here,
we shall describe an algorithm based on an ‘extremal’ property of
the Exponential distribution. This algorithm will utilize the unreliable
information layer designed in Information dissemination for the pur-
pose of information exchange. The appropriately quantized version of
this algorithm as well as information theoretic arguments suggesting
its fundamental optimality will be discussed (see ‘Summary’) as well.

Next, we consider Gossip algorithm design for the task of scheduling
in constrained queueing networks. This is a key operational question for
networks such as those operating over a common wireless medium. For
such a network a scheduling algorithm is required for the media access
control (MAC). We describe Gossip scheduling algorithm in Network
scheduling. This algorithm builds upon the separable function compu-
tation algorithm using clever randomization.

Network resource allocation is another fundamental problem that
is faced while operating a communication network. Under flow-level
modeling of a network, this involves solving certain network-wide or
global constrained convex optimization problems. Therefore, we con-
sider the question of designing a Gossip algorithm for a class of convex
optimization problems in Network convex optimization. This algorithm,
like network scheduling, builds upon the separable function computa-
tion algorithm. Specifically, it utilizes the separable function computa-
tion algorithm to design a ‘distributed computation’ layer.

In summary, the algorithms presented in this survey provide ‘layers’
of computation in a network. The key reason for the existence of such

10 Introduction

a ‘layered’ algorithmic architecture lies in the ability to ‘function-
ally decompose’ many interesting problems with separable function
computation central to the decomposition. For this reason, Gossip
algorithm for separable function computation becomes a key ‘sub-
routine’ in designing Gossip algorithms for many seemingly complex
network computation problems. For these reasons, in addition to appli-
cations described in this survey, the separable function computation
algorithm can be used to design Gossip algorithms for other impor-
tant applications including spectral decomposition (using the algorithm
of Kempe and McSherry [38] and the separable function computation
algorithm) and Kalman filtering.

2
Preliminaries

2.1 Graphs and Random Walks

We will introduce notations, definitions and some known results that
will be useful throughout the paper. We start with very basic notions.
An object that will play central role is the graph. A graph consists
of some finite number, say n, of nodes, which will be numbered and
represented as a vertex set V = {1, . . . ,n}; edges representing connec-
tions between the nodes are denoted by E ⊂ V × V . Thus, a graph
denoted by G will be defined by sets V and E and will be represented
as G = (V,E). We will assume a graph to be undirected, i.e., if (i, j) ∈ E

then (j, i) ∈ E as well.
A node i ∈ V has neighbors N (i) ∆= {j ∈ V : (i, j) ∈ E}. The degree

of node i, denoted by di is defined as di = |N (i)|. A path between two
nodes i �= j is denoted by a collection of edges (uk,uk+1) ∈ E,0 ≤ k < �

for some � ≥ 1, where u0 = i and u� = j. The length of a path is defined
as the number of edges that belong to the path. A path between two
nodes of the shortest length is called a shortest path. If there is a path
between any two nodes in V then we call the graph connected. Any
connected undirected graph induces a finite valued metric on nodes in

11

12 Preliminaries

V as follows: define metric dG : V × V → N by assigning the length of
shortest path between nodes i �= j ∈ V as dG(i, j) and dG(i, i) = 0 for
all i ∈ V . Diameter D of a connected graph G is defined as

D = max
i,j∈V

dG(i, j).

A random walk on a graph G = (V,E) or equivalently a Markov
chain with its states represented by V and transitions represented by
E, is defined by an n × n non-negative valued probability transition
matrix P = [Pij], where Pij is the probability of transition from state
or node i to j. We shall use the terms random walk or Markov chain
associated with graph G and/or probability matrix P interchangeably
throughout.

Now by definition, the probability matrix P ∈ Rn×n
+ must satisfy

n∑
j=1

Pij = 1, ∀ i ∈ V.

Further, it is graph G conformant, i.e., if (i, j) /∈ E then Pij = Pji = 0.
A matrix P is called irreducible if for any i �= j ∈ V , there exists a
path (uk,uk+1) ∈ E,0 ≤ k < � for some � ≥ 1 with u0 = i,u� = j and∏�−1

k=0 Pukuk+1 > 0. The matrix P is said to have period d if V can
be decomposed into a disjoint union of d non-empty sets V0, . . . ,Vd−1,
i.e., V = ∪d−1

k=0Vk;Vk ∩ Vk′ = ∅, for 0 ≤ k �= k′ < d and for any i ∈ Vk, if
Pij > 0 then j ∈ V(k+1)mod d. P is called aperiodic if it does not have
periods larger than 1. Throughout, we will be interested in P that are
irreducible and aperiodic unless specified otherwise.

A probability distribution π = [πi] ∈ Rn
+ is called a stationary distri-

bution of probability matrix P if πT P = πT or equivalently if it satisfies
the balance equations

πj =
n∑

i=1

πiPij , ∀ j ∈ V.

By the Perron–Frobenius Theorem (see book by Horn and Johnson
[30]) it follows that any irreducible and aperiod P has a unique sta-
tionary distribution π with all components being strictly positive.
Further, for such a P if we consider its tth power, P t, then P t

ij → πj as

2.2 Mixing Time and Conductance 13

t → ∞, for all i, j ∈ V . A matrix P with such a convergence property
is called ‘ergodic’. For an ergodic random walk, we define the notion
of an ergodic flow. Specifically, it is an n × n matrix Q = [Qij] where
Qij = πiPij . For an ergodic random walk ergodic flow Q defines P and
π uniquely. This is because, πi =

∑
j πjPji =

∑
j Qji. And if π,Q are

known then Pij = Qij/πj .
Finally, we classify irreducible and aperiodic Markov chains into

two classes: reversible and non-reversible. A Markov chain or random
walk with transition matrix P and stationary distribution π is called
reversible if πiPij = πjPji for all i, j ∈ V . A Markov chain that is not
reversible is called non-reversible. A special class of reversible Markov
chains are those with symmetric P , i.e., Pij = Pji for all i, j ∈ V . For
such a P , it can be easily checked that π = (1/n)1 = [1/n]. That is,

1T P = 1T and P1 = 1.

2.2 Mixing Time and Conductance

As noted above, for any irreducible and aperiodic P , P t converges to
a matrix with all of its rows equal to πT . The question of interest in
the context of algorithms based on random walk (such as the ones
we will consider throughout) is that of determining the rate at which
this convergence happens. More precisely, for a given ε > 0 we will be
interested in finding out how large a t is needed so that P t is ε close
to this eventual matrix in some ‘norm’. This is formalized in terms of
the ‘mixing time’ of the random walk based on P .

Specifically, we will introduce two seemingly different but closely
related definitions of mixing times. As we shall see, both of them are
closely related and will be useful in characterizing mixing times for
different situations depending upon the ‘type’ of P . First, we introduce
a notion of mixing time based on a ‘total variation’ distance between
distributions.

Definition 2.1(Mixing time: total variation). For a random walk
(or Markov chain) with transition matrix P and stationary distribu-
tion π = [πi], let ∆i(t) = 1

2
∑n

j=1 |P t
ij − πj |. Then, the ε-mixing time is

14 Preliminaries

defined as

τ(ε,P) = max
i

inf{t:∆i(s) ≤ ε, ∀ s ≥ t}. (2.1)

The other notion of a mixing time is based on stopping rules. A stopping
rule Γ is a stopping time based on the random walk of P : at any time,
it decides whether to stop or not, depending on the walk seen so far
and possibly additional randomness (or coin flips). Suppose the starting
node w0 is drawn from distribution σ. The distribution of the stopping
node wΓ is denoted by σΓ = τ and call Γ the stopping rule from σ to τ .
Let H(σ,τ) be the infimum of mean length over all such stopping rules
from σ to τ . This is well-defined as there exists the following stopping
rule from σ to τ : select i with probability τi and walk until getting to i.

Definition 2.2(Mixing time: Stopping rule). Given Markov chain
P with stationary distribution π, the stopping rule based mixing time
H(P) is defined as:

H(P) = max
σ

H(σ,π),

where σ is over the space of all distributions on V .

A related important notion is that of ‘conductance’. Given Markov
chain with transition matrix P and stationary distribution π, its con-
ductance Φ(P) is defined as

Φ(P) = min
S⊂V

∑
i∈S,j∈V \S πiPij

π(S)π(V \S)
, (2.2)

where π(A) =
∑

i∈A πi.
Some remarks about Φ(P) are in order. For symmetric P , the sta-

tionary distribution is uniform, i.e., π = (1/n)1. Further, symmetry of
P implies that

∑
i∈S,j∈Sc Pij =

∑
i∈S,j∈Sc Pji. Using these two proper-

ties, the Φ(P) for such symmetric P simplifies to

Φ(P) = min
S⊂V :|S|≤n/2

∑
i∈S,j∈Sc Pij

|S| . (2.3)

In the context of symmetric P (which will be the case in many sce-
narios considered), we will use the term ‘conductance’ for (2.3) instead
of (2.2).

2.2 Mixing Time and Conductance 15

2.2.1 Techniques: Characterizing Mixing Time

There are many algebraic, analytic, and combinatorial techniques
available to characterize the mixing time, either based on total vari-
ation or stopping time for Markov chains. Here, we list a set of
known results that will be useful throughout. To learn details of these
results/techniques as well as a host of other results/techniques we refer
an interested reader to the excellent surveys by Lovasz and Winkler [43],
Montenegro and Tetali [52].

First, we state a result that relates τ(ε,P) and H(P). Specifically,
for any ε > 0, we have

τ(ε,P) = O

(
H(P) log

1
ε

)
.

Next, we present a bound on τ(ε,P) in terms of eigenvalues. If P is
reversible, then one can view P as a self-adjoint operator on a suitable
inner product space and this permits us to use the well-understood
spectral theory of self-adjoint operators. It is well-known that P has
n = |V | real eigenvalues 1 = λ0 > λ1 ≥ λ2 ≥ ·· · ≥ λn−1 > −1. Then for
any ε > 0, τ(ε,P) is bounded as follows:

λP

2(1 − λP)
log

1
2ε

≤ τ(ε,P) ≤
⌈

1
1 − λP

log
1

επ0

⌉
,

where λP = max{|λ1|, |λn−1|} and π0 = mini πi. The 1 − λP is also
called the spectral gap of reversible matrix P .

When, P is non-reversible we consider PP ∗ where P ∗ is the adjoint
of P with respect to the appropriate inner product space. For P with
uniform stationary distribution, P ∗ = P T . It follows by definition that
the Markov chain with PP ∗ as transition matrix is reversible. Let 1 −
λPP ∗ be the spectral gap of this reversible Markov chain. Then, for any
ε > 0, the ε-mixing time of the original Markov chain (with transition
matrix P) is bounded above as

τ(ε,P) ≤
⌈

2
1 − λPP ∗

log
n

ε
√

π0

⌉
. (2.4)

Now, we present a technique known as ‘the fill-up lemma’ (see [1]).
It will be useful to bound the stopping rule based mixing time, H(P)

16 Preliminaries

in certain scenarios involving non-reversible random walks. This is par-
ticularly useful when it is difficult to design an exact stopping rule
with small average time-length. In that situation, the ‘fill-up lemma’
suggests the following two step approach.

Step 1. For a positive constant δ > 0 and any starting distribu-
tion σ, design a stopping rule whose stopping distribution
γ is δ-far from π in the sense that γ ≥ (1 − δ)π, with
inequality holding component-wise. Such a construction
by definition provides an upper bound on H(σ,γ).

Step 2. Now, the H can be bounded using H(σ,γ) for such a choice
of γ, as

H ≤ 1
1 − δ

Hδ,

where Hδ =maxσ minγ≥(1−δ)π H(σ,γ). That is, H ≤ 1
1−δ

H(σ,γ).

Finally, we provide a relation between mixing time and the con-
ductance. For any P , the stopping rule based mixing time, H(P) is
bounded as

1
Φ(P)

≤ H(P) ≤ O

(
logn

Φ2(P)

)
.

Let us restrict P to be reversible and let us assume that λP = λ1 as
per above notation. This is not a restrictive assumption because for
any P , the Markov chain with transition matrix (I + P)/2 has this
property and it can be easily checked that the mixing time of P and
that of (I + P)/2 differ only by a constant factor. Now for such a P ,
the conductance Φ(P) bounds the spectral gap, 1 − λ1 as

Φ2(P)
2

≤ 1 − λ1 ≤ 2Φ(P).

2.2.2 A Related Notion: k-Conductance

Here, we introduce a notion related to ‘conductance’ Φ(P) of a prob-
ability matrix P . We define this notion building upon the simplifi-
cation achieved in (2.3) for symmetric matrices. Specifically, for any

2.3 Some Graph Models 17

1 ≤ k ≤ n − 1 we define k-conductance Φk(P) as

Φk(P) = min
S⊂V :|S|≤k

∑
i∈S,j∈Sc Pij

|S| . (2.5)

The notion of k-conductance will be utilized to study information
spreading algorithms.

2.3 Some Graph Models

Here, we describe various network graph models that are used in appli-
cations. We shall use these models for illustration purposes.

2.3.1 Complete Graph

The complete graph represents situation when all nodes can communi-
cate with each other. That is, essentially no graphical communication
constrains. In a sense, the complete graph can be used to provide abso-
lute bound on the best performance an algorithm can achieve when
the graph structure can affect performance of the algorithm. In that
sense, the complete graph serves as an important conceptual graphical
structure.

For a complete graph of n nodes, a natural symmetric probability
matrix is P = [1/n], i.e., all entries being equal to 1/n. For such a
matrix, it is easy to check that it is irreducible, aperiodic and hence
ergodic. It has a uniform stationary distribution. The mixing time of
P is 1 since for any starting distribution, within 1 step the distribu-
tion becomes uniform. Note that this applies to both definitions of
mixing time.

Let us consider the conductance of P , Φ(P) defined by (2.3). For
any S ⊂ V with |S| = k ≤ n/2, we have∑

i∈S,j∈Sc Pij

|S| =
1
n |S||Sc|

|S| =
n − k

n
.

Therefore, in order to minimize the above for k ≤ n/2, we should choose
k =
n/2� and this yields that

Φ(P) =
�n/2�

n
≈ 1/2.

18 Preliminaries

Now, we compute the k-conductance. Using the same calculations
as above, but in place of n/2 if we use k, we obtain

Φk(P) ≈ 1 − k

n
.

We shall be interested in the following ‘harmonic’ like mean of Φk(P)
for 1 ≤ k < n, denoted by Φ̂(P) and defined as

Φ̂(P) =
n−1∑
k=1

k

Φk(P)
.

Then, for the above described P for the complete graph, we have

Φ̂(P) =
n−1∑
k=1

kn

n − k
= Θ(n2 logn).

2.3.2 Ring Graph

The ring graph of n nodes is formed by placing n nodes on a circle (or a
ring) and connecting each node to two of its nearest neighbors. This is
essentially the most communication constrained graph. Qualitatively,
complete graph represents one end of the spectrum of graphs while the
ring graph presents the other end. In a sense, the complete graph has no
‘geometry’ while the ring graph has the ‘strongest’ possible ‘geometry’.
For this reason, in a sense ring graph provides an absolute bound on
the worse performance a graph algorithm can achieve. Therefore, the
ring graph serves as another important conceptual graphical structure.

For a ring graph of n nodes, a natural symmetric probability matrix
P is as follows: for each i, Pii = 1/2, Pii+ = Pii− = 1/4 where i+ and i−

represent neighbors of i on either side. The mixing time τ(ε,P) is Ω(n2)
and O(n2 logn/ε). It can be checked that the conductance for such P

is Φ(P) = Θ(1/n). The k-conductance is Φk(P) = Θ(1/k). Therefore,
it follows that Φ̂(P) = Θ(n3).

2.3.3 Expander Graph

Informally, an expander graph refers to a class of graphs indexed by
the number of nodes that have good ‘expansion’ property. There are
various equivalent definitions for expander graphs. Here, we will define

2.3 Some Graph Models 19

expander graphs in terms of the graph conformant ergodic probability
matrix P . Specifically, we call a sequence indexed by the number of
nodes n of random walk with probability transition matrix P over
graph G as ‘expanding’ (or G,P as expander) if there exists δ > 0,
independent of n so that Φ(P) ≥ δ. This will imply that the mixing
time of P essentially scales as O(logn), i.e., the random walk mixes
very fast. There are various popular network models that posses this
property. Specific examples include the Preferential Connectivity Model
for the Internet graph and the Small World Model for social network
(for certain range of parameters) with ‘natural’ random walk.

A special class of expander graphs that we will use for the purpose
of illustration throughout is the d-regular expander for d ≥ 3. These are
graph sequences such that for any number of nodes n, each node has
degree d, where d is independent of n. For any graph in this sequence,
it has good ‘expansion’ property. Specifically, for any subset S ⊂ V of
size at most n/2 there exists α > 0 (independent of n) such that

E(S,Sc) ≥ α|S|,
where E(S,Sc) = |{(i, j) ∈ E : i ∈ S, j ∈ Sc}|. For such a graph consider
a natural P defined as follows:

Pij =


1
2 , if i = j

1
2d , if j ∈ N (i)

0, otherwise.

Such a P is symmetric and has a uniform stationary distribution. Con-
sider the conductance of P :

Φ(P) = min
S⊂V :|S|≤n/2

∑
i∈S;j∈Sc Pij

|S|

= min
S⊂V :|S|≤n/2

∑
i∈S;j∈Sc

1
2d

|S|

=
1
2d

min
S⊂V :|S|≤n/2

E(S,Sc)
|S|

≥ min
S⊂V :|S|≤n/2

α|S|
2d|S| ≥ α

2d
. (2.6)

20 Preliminaries

Thus, the natural P has conductance which is at least α/2d > 0, inde-
pendent of n. Thus, such a graph with natural probability matrix P

described above is indeed an expander as per our definition.
Now, we compute the k-conductance. Using the same calculations

as above, but in place of n/2 if we use k, we obtain for k ≤ n/2

Φk(P) ≥ α

2d
⇒ Φk(P) = Θ(1).

For k > n/2, consider the following. For S such that |S| = k > n/2

E(S,Sc) = E(Sc,S) ≥ α|Sc| = α(n − |S|) = α(n − k).

Using this, it follows that for k > n/2,

Φk(P) ≥ α

2d

n − k

k
= Ω

(
n − k

k

)
.

Then, calculations similar to those done for the complete graph imply
that

Φ̂(P) = O(n2 logn).

Existence of d-regular expanders was first established by Pinsker by
means of a probabilistic argument: for d ≥ 3, random d-regular con-
nected graphs are expanders with positive probability. Now, we know
various explicit constructions of such graphs. For example, the Zig Zag
construction of d-regular expander by Reingold et al. [61].

2.3.4 Geometric Random Graph

The Geometric Random Graph has been used successfully to model
ad-hoc wireless networks. A d-dimensional Geometric Random Graph
of n nodes, modeling a wireless ad-hoc network of n nodes with wireless
transmission radius r, denoted as Gd(n,r) is obtained as follows: place
n nodes on a d-dimensional unit cube uniformly at random and connect
any two nodes that are within distance r of each other.

An example of a two dimensional graph, G2(n,r) is shown in
Figure 2.1. The following is a well-known threshold result about the

2.3 Some Graph Models 21

Fig. 2.1 An example of a Geometric Random Graph in two-dimensions. A node is connected
to all other nodes that are within distance r of itself.

connectivity of Gd(n,r) (for a proof, see [19, 28, 58]):

Lemma 2.1. There exists a constant αd > 0 such that for any ε >

0, if (nrd(n)/logn) ≥ αd + ε then the Gd(n,r(n)) is connected with
probability 1 − o(1) and if (nrd(n))/logn ≤ αd − ε then Gd(n,r(n)) is
not connected with probability 1 − o(1).

Here, we shall consider r(n) such that (nrd(n))/logn = ω(1), i.e.,
G(n,r(n)) is connected with high probability. Let dmax and dmin denote,
respectively, the maximum and minimum vertex degree of such a
G(n,r(n)). Then, it can be argued that with probability 1 − o(1),

dmax = (1 + o(1))dmin.

That is, G(n,r(n)) is almost regular. Therefore, we can define the
natural random walk on G(n,r(n)) with transition matrix P where

Pij =


1
2 , if i = j,

1
2di

, if j ∈ N (i),

0, otherwise.

22 Preliminaries

Clearly P is aperiodic (due to self-loop) and irreducible (since
G(n,r(n)) is connected) with probability 1 − o(1). Let π be the sta-
tionary distribution of such a random walk P . Then, it follows that
πi = (1 + o(1))/n with probability 1 − o(1). It has been established
that the mixing time of such a random walk is

τ(ε,P) = Ω(r(n)−2) and τ(ε,P) = O(r(n)−2 logn/ε).

Further, it has been established that the fastest mixing reversible ran-
dom walk on G(n,r(n)) with uniform stationary distribution has mix-
ing time no faster than r(n)−2. That is, the natural random walk over
G(n,r) has the mixing time of the same order as that of the random
walk with the fastest mixing time. We note that for the natural random
walk with probability matrix P , and for r(n) = Θ(log3/2 n/

√
n) with a

large enough constant, the conductance Φ(P) scales like Θ∗(r(n)).

2.4 Historical Notes

We presented preliminaries about random walks, mixing times and
graph models. The theory of mixing time is quite well developed.
Various results are reported here and many others not reported here
can be found in excellent surveys by Lovasz and Winkler [43] and by
Montenegro and Tetali [52]. We make note of a result about the charac-
terization of the fastest mixing reversible random walk on a given graph
in terms of an appropriately defined Semi-Definite Program (SDP) by
Boyd et al. [7] due to its applicability in proving bounds on mixing
times for various reversible random walks. For mixing time analysis of
the natural random walk on a ring graph and on a Geometric random
graph we refer the reader to the work by Boyd et al. [8]. For evalua-
tion of conductance on a ring and on a Geometric random graph we
refer the reader to work by Madan et al. [45]. For various expander
related results we refer the reader to a set of lecture notes by Linial
and Widgerson [42].

3
Information Dissemination

3.1 Setup

We are given a connected network of n nodes with a connectivity graph
G = (V,E). Each node, say i ∈ V , has its own information denoted
by xi. The information xi can be thought of as a collection of bits,
a packet or even a real number. The interest is in spreading or dis-
seminating this information to possibly different subsets of nodes in
V . We will consider two special scenarios motivated by applications to
distributed computation, estimation in sensor networks, and content
distribution in peer-to-peer networks.

The first scenario consists of a situation when exactly one of the
n nodes wishes to spread its information to all the remaining n − 1
nodes. We will denote this scenario of single multicast as Single-piece
dissemination. Formally, let an arbitrarily selected node, say i ∈ V ,
has a piece of information. The goal is to spread this information to
all nodes in V as quickly as possible by means of a Gossip algorithm.
This situation naturally arises in a sensor network deployed for some
event detection such as ‘smoke detection’ in a building — one (or few)
sensors detect smoke and they wish to ‘alarm’ all the sensors in the

23

24 Information Dissemination

building as quickly as possible for evacuation. Another such situation
is that of content distribution over a peer-to-peer network where con-
tent is arising from a large content distributor. For example, the use
of the BBCiplayer by BBC [70]. Finally, an important ‘sub-routine’
in many distributed computation problems corresponds to the single-
piece information dissemination scenario. This is explained in detail in
Separable function computation.

The second scenario corresponds to a situation where all nodes have
their individual pieces of information and each node wishes to dissemi-
nate its own information to all the other nodes. This all-to-all multicast
scenario will be denoted by multi-piece dissemination. Again, the goal
will be to disseminate all information to all nodes as quickly as possible
by means of a Gossip algorithm. This situation arises in content distri-
bution over a peer-to-peer network when content is generated not only
by one (or few) distributors like BBC, but also by many users. This is
the case for advertisement over a P2P network where many advertizers
have their own information that they wish to disseminate very widely.

In what follows, we shall describe natural Gossip algorithms for
both of the above scenarios. We will charcterize the performance of
these algorithms in terms of certain spectral-like properties of the
underlying network graph G. This will suggest that Gossip protocols
are quite efficient in network resource utilization for such information
dissemination.

3.2 Single-Piece Dissemination

Given the network G = (V,E) of n nodes, an arbitrary node v ∈ V has
a piece of information that it wishes to spread to all the other nodes
as quickly as possible. We will describe a natural randomized Gossip
algorithm which is very much like ‘rumor mongering’.

To this end, let P = [Pij] be an n × n graph G conformant doubly
stochastic and symmetric matrix. The algorithm utilizing P is as fol-
lows. Let time be discrete and denoted by t ∈ N. Let S(t) ⊂ V denote
the set of nodes that contain node v’s information at time t. Initially,
t = 0 and S(0) = {v}. For information spreading at time t ≥ 1, each
node i ∈ V contacts one of its neighbors, say j with probability Pij ;

3.2 Single-Piece Dissemination 25

it will not contact any other node with probability Pii. Upon contact-
ing, if either i or j had v’s information at time t − 1, then both will
have v’s information at the end of time t.

A few remarks about the above described algorithm. First, each
node can contact at most one other node; but it can be contacted by
more than one node as part of the algorithm. Second, a node can spread
v’s information at time t only if it has received it by time t − 1. Third,
the information exchange protocol has both ‘pull’ and ‘push’ compo-
nents, i.e., when two nodes are connected information is exchanged in
both directions. As will become clear from analysis, the presence of
both ‘pull’ and ‘push’ is necessary for quicker dissemination.

Now the quantity of interest. For any ε > 0, we wish to find the
time by which all nodes have node v’s information with probability at
least 1 − ε, for any v ∈ V . Formally, the ε-dissemination time, denoted
by T one

spr (ε) is defined as

T one
spr (ε) = sup

v∈V
inf {t: Pr(S(t) �= V |S(0) = {v}) ≤ ε} .

Recall the definition of the ‘conductance’ of a symmetric, doubly
stochastic matrix P , denoted by Φ(P), from Preliminaries:

Φ(P) = min
S⊂V :|S|≤n/2

∑
i∈S;j∈Sc Pij

|S| .

Now, we are ready to state the characterization of the spreading time
of the above described natural Gossip algorithm based on P .

Theorem 3.1. Let P be an irreducible, doubly stochastic and sym-
metric matrix on graph G. Then, for the natural Gossip algorithm
described above

T one
spr (ε) = O

(
logn + logε−1

Φ(P)

)
.

3.2.1 Proof of Theorem 3.1

The proof is divided into two phases of the algorithm. The first phase
corresponds to the time period starting at t = 0 until |S(t)| ≤ n/2.

26 Information Dissemination

The second phase corresponds to the time period starting after the end
of the first phase and until S(t) = V . We will show, starting with S(0) =
{v} for any v ∈ V , that each phase is at most O(logn + logε−1)/Φ(P)
with probability at least 1 − ε/2. This will complete the proof of The-
orem 3.1. We remark that, the bound on the time length of the first
phase essentially relies on the ‘push’ aspect of the algorithm while the
bound on the time length of the second phase essentially relies on the
‘pull’ aspect of the algorithm.

3.2.1.1 Phase 1: |S(t)| ≤ n/2

Fix the node v ∈ V with S(0) = {v}. We will study the evolution of
the size of the set S(t) containing the information of v. Here, we are
concerned with the first phase, i.e., the time duration when |S(t)| ≤
n/2. Through the time-evolution of S(t), we will bound the length of
the first phase. As stated above, we will ignore the effect due to the pull
aspect of the algorithm in the first phase. It can be easily argued that
ignoring the pull aspect can only yield a weaker bound. For notational
simplicity, we will use Φ instead of Φ(P) by dropping reference to P .

Now, we want to study increase |S(t + 1)| − |S(t)| at time t, when
|S(t)| ≤ n/2. For j /∈ S(t), let Xj be an indicator random variable that
is 1 if node j receives the information of v via a ‘push’ from some node
i ∈ S(t) in time slot t + 1, and is 0 otherwise. The probability that j

does not receive the information via a push is the probability that no
node i ∈ S(t) contacts j, and so

E[Xj | S(t)] = 1 − Pr(Xj = 0 | S(t))

= 1 −
∏

i∈S(t)

(1 − Pij)

≥ 1 −
∏

i∈S(t)

exp(−Pij)

= 1 − exp

−
∑

i∈S(t)

Pij

 . (3.1)

In the above equation, we used the inequality 1 − x ≤ exp(−x) for
x ≥ 0. The Taylor series expansion of exp(−z) about z = 0 implies that,

3.2 Single-Piece Dissemination 27

if 0 ≤ z ≤ 1, then

exp(−z) ≤ 1 − z + z2/2 ≤ 1 − z + z/2 = 1 − z/2. (3.2)

For a doubly stochastic matrix P , we have 0 ≤∑
i∈S(t) Pij ≤ 1, and so

we can combine Eqs. (3.1) and (3.2) to obtain

E[Xj | S(t)] ≥ 1
2

∑
i∈S(t)

Pij .

By linearity of expectation,

E[|S(t + 1)| − |S(t)| | S(t)] =
∑

j /∈S(t)

E[Xj | S(t)]

≥ 1
2

∑
i∈S(t),j 	∈S(t)

Pij

=
|S(t)|

2

∑
i∈S(t),j 	∈S(t) Pij

|S(t)| .

When |S(t)| ≤ n/2, we have

E[|S(t + 1)| − |S(t)| | S(t)] ≥ |S(t)|Φ(P)
2

∆= |S(t)|Φ
2

. (3.3)

Using (3.3), we seek to upper bound the duration of the first phase. To
this end, let

Z(t) =
exp

(Φ
8 t
)

|S(t)| .

Define the stopping time L = inf{t: |S(t)| > n/2}, and L ∧ t =
min(L,t). If |S(t)| > n/2, then L ∧ (t + 1) = L ∧ t, and thus

E[Z(L ∧ (t + 1)) | S(L ∧ t)] = Z(L ∧ t).

Now, suppose that |S(t)| ≤ n/2, in which case L ∧ (t + 1) =
(L ∧ t) + 1. The function g(z) = 1/z is convex for z > 0, which implies
that, for z1,z2 > 0,

g(z2) ≥ g(z1) + g′(z1)(z2 − z1). (3.4)

28 Information Dissemination

Applying (3.4) with z1 = |S(t + 1)| and z2 = |S(t)| yields
1

|S(t + 1)| ≤ 1
|S(t)| − 1

|S(t + 1)|2 (|S(t + 1)| − |S(t)|). (3.5)

We have ignored the effect of the ‘pull’ aspect in this phase to obtain
bound on its time duration (it only worsens the bound). And due to
the ‘push’, it easily follows that |S(t + 1)| ≤ 2|S(t)|. Therefore

1
|S(t + 1)| ≤ 1

|S(t)| − 1
4|S(t)|2 (|S(t + 1)| − |S(t)|). (3.6)

Combining (3.3) and (3.6), and using the fact that 1 − z ≤ exp(−z) for
z ≥ 0, we obtain that, if |S(t)| ≤ n/2, then

E
[

1
|S(t + 1)|

∣∣∣ S(t)
]

≤ 1
|S(t)|

(
1 − Φ

8

)
≤ 1

|S(t)| exp
(

−Φ
8

)
.

This implies that

E[Z(L ∧ (t + 1)) | S(L ∧ t)] = E

[
exp

(Φ
8 (L ∧ (t + 1))

)
|S(L ∧ (t + 1))|

∣∣∣∣ S(L ∧ t)

]

= exp
(

Φ
8

(L ∧ t)
)

exp
(

Φ
8

)
× E

[
1

|S((L ∧ t) + 1)|
∣∣∣ S(L ∧ t)

]
≤ exp

(
Φ
8

(L ∧ t)
)

1
|S(L ∧ t)|

= Z(L ∧ t).

Therefore, Z(L ∧ t) is a supermartingale. That is,

E[Z(L ∧ t)] ≤ E[Z(L ∧ 0)] = 1, for all t > 0.

The fact that the set S(t) can contain at most the n nodes in the graph
implies that

Z(L ∧ t) =
exp

(Φ
8 (L ∧ t)

)
|S(L ∧ t)|

≥ 1
n

exp
(

Φ
8

(L ∧ t)
)

. (3.7)

3.2 Single-Piece Dissemination 29

Taking expectations on both sides of (3.7) yields

E
[
exp

(
Φ
8

(L ∧ t)
)]

≤ nE[Z(L ∧ t)]

≤ n.

Because exp(Φ(L ∧ t)/8) ↑ exp(ΦL/8) as t → ∞, the monotone conver-
gence theorem implies that

E
[
exp

(
ΦL

8

)]
≤ n.

Applying Markov’s inequality, we obtain that, for t1 = 8(ln2 + 2lnn +
lnε−1)/Φ,

Pr(L > t1) = Pr
(

exp
(

ΦL

8

)
>

2n2

ε

)
≤ ε

2n
.

Thus, the time duration of the first phase is O((logn + logε−1)/Φ) with
probability at least 1 − ε/2n.

3.2.1.2 Phase 2: n/2 < |S(t)| ≤ n

Now we wish to study the time duration of second phase starting at
|S(t)| ≥ n/2 until |S(t)| = n. Unlike the first phase, we will study the
evolution of the size of the set of nodes that do not have the information,
i.e., |S(t)c|. This quantity will decrease as the information spreads from
nodes in S(t) to nodes in S(t)c. For simplicity, let us consider restart-
ing the process from clock tick 0 after L (i.e., when at least half the
nodes in the graph have the information for the first time), so that we
have |S(0)c| ≤ n/2. As stated earlier, in this phase we will ignore the
effect of ‘push’ and only consider the effect of the ‘pull’ aspect of the
algorithm.

In time t + 1, a node j ∈ S(t)c will receive the information if it
contacts a node i ∈ S(t) and pulls the information from i. As such,

E[|S(t)c| − |S(t + 1)c| | S(t)c] ≥
∑

j∈S(t)c,i/∈S(t)c

Pji.

30 Information Dissemination

Thus, we have

E[|S(t + 1)c| | S(t)c] ≤ |S(t)c| −
∑

j∈S(t)c,i/∈S(t)c

Pji

= |S(t)c|
(

1 −
∑

j∈S(t)c,i/∈S(t)c Pji

|S(t)c|

)
≤ |S(t)c|(1 − Φ) . (3.8)

We note that this inequality holds even when |S(t)c| = 0, and as a result
it is valid for all time t in the second phase. Repeated application of
(3.8) yields

E[|S(t)c|] = E [E[|S(t)c| | S(t − 1)c]]

≤ (1 − Φ)E[|S(t − 1)c|]
≤ (1 − Φ)t E[|S(0)c|]
≤ exp(−Φt)

(n

2

)
.

For t2 = (2lnn + lnδ−1)/Φ, we have E[|S(t2)c|] ≤ ε/(2n). Application
of Markov’s inequality now implies

Pr(|S(t2)c| > 0) = Pr(|S(t2)c| ≥ 1)

≤ E[|S(t2)c|]
≤ ε

2n
.

Thus, we have obtained that the duration of the second phase is no
longer than O((logn + logε−1)/Φ) with probability at least 1 − ε/2n.
Therefore, by union bound it follows that the combined duration of
the two phases is no longer than O((logn + logε−1)/Φ) with prob-
ability at least 1 − ε/n. Note that these bounds are independent of
the starting node v ∈ V . Therefore, it implies the desired claim of
Theorem 3.1

T one
spr (ε) = O

(
logn + logε−1

Φ(P)

)
.

3.2 Single-Piece Dissemination 31

3.2.2 Applications

Here, we describe application of the Gossip algorithm for single-piece
information dissemination for various relevant network graphs.

3.2.2.1 Complete graph

The complete graph represents a situation where all nodes can com-
municate with each other. That is, there are essentially no graphical
communication constraints. For complete graph of n nodes, a natural
symmetric probability matrix is P = [1/n], i.e., all entries being equal
to 1/n. For such a matrix, as explained in Preliminaries, Φ(P) = O(1).
Therefore, T one

spr (ε) = O(logn + logε−1). That is, for ε = Ω(1/poly(n))
we have T one

spr (ε) = O(logn). Now since each node can spread informa-
tion to at most one other node in a given time instance, the spreading
time is lower bounded by Ω(logn) for any graph. Thus the natural
gossip algorithm spreads information essentially as fast as possible on
complete graphs.

3.2.2.2 Ring graph

The ring graph of n nodes is formed by placing n nodes on a circle
(or a ring) and connecting each node to two of its nearest neighbors.
This is essentially the most communication constrained graph. Qual-
itatively, the complete graph represents one end of the spectrum of
graphs while the ring graph presents the other. In a sense, complete
graph has no ‘geometry’ while ring graph has the strongest possible
‘geometry’.

For the ring graph of n nodes, a natural symmetric probability
matrix P is as follows: for each i, Pii = 1/2, Pii+ = Pii− = 1/4 where
i+ and i− represent neighbors of i on either side. As established in Pre-
liminaries, Φ(P) = Θ(1/n). Therefore, for ε = Ω(1/poly(n)) we have
Tave(ε) = O(n logn). Now the ring graph has diameter n, and hence
Ω(n) is a lower bound on any spreading algorithm. Thus, again the nat-
ural Gossip algorithm is essentially the fastest possible algorithm on the
ring graph as well. We make a note of the fact that a simple centralized
algorithm on ring graph will take only O(n) time to spread a single piece

32 Information Dissemination

of information. However, the whole point of gossip algorithm is to be
topology unaware. Therefore, even though the algorithm may be slower
than optimal centralized algorithm by O(logn), such a performance is
still very acceptable.

3.2.2.3 Expander graph

The expander graph, by definition, is a class of graphs indexed by
the number of nodes n that have good ‘expansion’ property. Specif-
ically, consider a d-regular expander with all nodes having degree d.
The natural probability matrix P will be such that Φ(P) = O(1) as
discussed in Preliminaries. Thus, again the T one

spr (ε) = O(logn) for all
ε = Ω(1/poly(n)). That is, the Gossip algorithm performs essentially
as fast as possible.

3.2.2.4 Geometric random graph

The Geometric random graph over n nodes is formed by placing
nodes uniformly at random in a geographic area and then connecting
nodes within distance r = r(n), the connectivity radius. Such a graph,
denoted as G(n,r) is extensively used for modeling wireless networks.
The detailed description is provided in Preliminaries. As established
there, the natural P on G(n,r) has Φ(P) scaling as r for an appropri-
ate choice of r. Therefore, for ε = Ω(1/poly(n)) we will have T one

spr (ε) =
O(r−1 logn). But the diameter of G(n,r) scales as r−1. Thus, again the
gossip algorithm spreads information essentially as fast as possible.

3.3 Multi-Piece Dissemination

Here, we consider scenario where each node wishes to spread its own
distinct message to all the other nodes as quickly as possible in the
given graph G = (V,E) with natural Gossip algorithm based on a graph
conformant doubly stochastic symmetric matrix P . Let mi denote the
message of node i and M = {m1, . . . ,mn} denote the set of all of these
n messages.

The algorithm based on P runs in discrete time, denoted by t ∈ N,
as before. Let Si(t) ⊂ M denote the set of messages node i has at

3.3 Multi-Piece Dissemination 33

the beginning of time t. Initially, t = 0 and Si(0) = {mi} for all i.
Under the Gossip algorithm, at each time t node i ∈ V contacts one
of its neighbors, say node j with probability Pij and does not con-
tact any node with probability Pii. Upon contact, node i sends an
arbitrary message from Si(t)\Sj(t) to node j, if Si(t)\Sj(t) �= ∅; and
node j sends an arbitrary message from Sj(t)\Si(t) to node i, if
Sj(t)\Si(t) �= ∅.

Some remarks are in order. As in the single-piece dissemination,
we have both ‘pull’ and ‘push’ as part of the algorithm. Each node
contacts at most one other node, but each node can be contacted by
multiple nodes. For information exchange at time t, the nodes can uti-
lize information that was present at nodes in the beginning of time t.
Finally, computing Si(t)\Sj(t) at node i requires information of neigh-
bor j’s message set Sj(t). This can be done by various efficient data
structures. However, this computation can be avoided by means of ran-
dom linear codes [14, 54]. However, it comes at the cost of coding and
decoding.

Now the quantity of interest. For any ε > 0, we wish to find the
time by which all nodes have all the messages M with probability at
least 1 − ε. Formally, this ε all-dissemination time, denoted by T all

spr(ε)
is defined as

T all
spr(ε) = inf

{
t: Pr

(
n⋃

i=1

{Si(t) �= M}
)

≤ ε

}
.

Recall the definition of the ‘k-conductance’ of P , denoted by Φk(P),
from Preliminaries:

Φk(P) = min
S⊂V :|S|≤k

∑
i∈S;j∈Sc Pij

|S| .

Let us define Φ̂(P) as ‘Harmonic’ like mean of Φk(P),1 ≤ k < n, as

Φ̂(P) =
n−1∑
k=1

k

Φk(P)
.

Now we are ready to state the characterization of the all-spreading time
of the above described natural Gossip algorithm based on P .

34 Information Dissemination

Theorem 3.2. Let P be an irreducible, doubly stochastic, and sym-
metric matrix on graph G. Then, for the natural Gossip algorithm
described above

T all
spr(ε) = O

(
Φ̂(P) logε−1

n

)
.

3.3.1 Proof of Theorem 3.2

Recall that the message set at node i in the beginning of time t, denoted
by Si(t) is a subset of M . Since M can have 2n distinct subsets, effec-
tively each node can be in one of the 2n distinct states, each corre-
sponding to a distinct subset of M , at any time t. Thus, under the
Gossip algorithm the overall network state (S1(t), . . . ,Sn(t)) evolves
over a state space of size 2n×n. This is in sharp contrast with single-
piece dissemination where we are only interested in the evolution of
one monotonically increasing set. Naturally, this makes the analysis
to follow much more involved and hence delicate compared to that of
single-piece dissemination.

To study this evolution over a very high-dimensional space, we intro-
duce the notion of ‘type’. Specifically, two nodes, say i and j, are called
of the same ‘type’ at time t if Si(t) = Sj(t). At time t, this notion of
‘type’ defines a partition of all n nodes into disjoint ‘type classes’, with
nodes having the same set of messages, i.e., nodes of the same ‘type’
belong to the same ‘type class’. We will call the size of a maximal type
class at time t as ‘maximum type-size’ and denote it by A(t). We will
call |Si(t)|, the number of messages at node i, as the ‘dimension’ of
node i at time t. By natural association, we will abuse notation (hope-
fully without causing confusion) to call ‘dimension’ of a ‘type class’ as
the dimension of any of the node belonging to that type class.

Now when all nodes have received all messages, there is only one
type class of size n and dimension n. Therefore, we wish to find the
following stopping time:

inf {t: |Si(t)| = n, ∀ i ∈ V } .

3.3 Multi-Piece Dissemination 35

Initially, at t = 0 we have |Si(t)| = 1 for all i ∈ V . Thus, the information
spreads to all the nodes when the overall dimension increases among all
the nodes is n(n − 1). Motivated by this, we study the overall dimension
increase as the ‘performance metric’ of the algorithm. To this end,
define the dimension increase at time t, denoted by D(t) as

D(t) =
n∑

i=1

(|Si(t)| − 1) =

(
n∑

i=1

|Si(t)|
)

− n.

By definition, D(0) = 0 and when all nodes have all messages then
D(t) = n(n − 1). Therefore, we will bound T all

spr(ε) by bounding the
time for D(t) to become n(n − 1). To this end, define

Lk = inf{t: A(t) ≥ k} and Yk = D(tk).

In words, Lk is the first time when any type class has at least k nodes,
and Yk is the total dimension increase up to time Lk. By definition,
L1 = Y1 = 0. The following result provides a lower bound on Yk.

Lemma 3.3. For any 1 ≤ k ≤ n, Yk ≥ k(k − 1).

Proof. Consider the time Lk, which is the first time any type class
contains k nodes. At this time, there are nodes i1, . . . , ik ∈ V in the
same type class. Since these nodes are of the same type,

Si1(Lk) = · · · = Sik(Lk).

By definition, mi ∈ Si(t) for all i ∈ V,t ∈ N. Hence, for all 1 ≤ � ≤ k,

{mi1 , . . . ,mik} ⊂ Si�(Lk).

This implies that |Si�(Lk)| ≥ k for 1 ≤ � ≤ k. Therefore, the total
dimension increase is at least (k − 1)k. That is,

Yk = D(Lk) ≥ k(k − 1).

Finally, by definition Ln is the time when all nodes have dimension n

and Yn = D(Ln) = n(n − 1). That is, by the time Ln all nodes have
received all messages. Therefore, a revised goal is to bound Ln. For
this, we will bound Lk+1 − Lk for all 0 ≤ k < n.

36 Information Dissemination

Now, consider a time t ∈ [Lk,Lk+1). Note that all Lk are stopping
times. Let there be b type classes, C1, . . . ,Cb at time t. For a pair of
nodes i, j, let Xij be an indicator random variable that is 1 if node i

contacts node j at time t and the dimension of i increases as a result
of the communication, and is 0 otherwise. Node i will contact j with
probability Pij . Similarly, j contacts i with probability Pji, which is
equal to Pij by symmetry of P . If Si(t) = Sj(t), then there will be
no increase in total dimension of either i and j upon communication
between them. Now suppose Si(t) �= Sj(t). Then either Si(t)\Sj(t) �= ∅
or Sj(t)\Si(t) �= ∅. Now if Si(t)\Sj(t) �= ∅, then upon j contacting i,
dimension of the j will increase by 1. Similarly, if Sj(t)\Si(t) �= ∅ then
dimension of i will increase by 1 upon i contacting j. In summary, if
Si(t) �= Sj(t) then

E[Xij] + E[Xji] ≥ Pij .

Now let F (t) = D(t + 1) − D(t) denote the total dimension increase of
all nodes by the end of time t. Note that Xij indicates an increase in
dimension due to the ‘pull’ effect. Since each node contacts at most one
other node for the ‘pull’ aspect of the protocol, by ignoring the ‘push’
effect we obtain

F (t) ≥
∑
i∈V

∑
j∈V :j 	=i

Xij . (3.9)

From the above discussion, it follows that

E[F (t)] ≥
∑
i∈V

∑
j>i

(E[Xij] + E[Xji])

≥
∑
i∈V

∑
j>i:Si(t) 	=Sj(t)

Pij

=
1
2

∑
i,j∈V :Si(t) 	=Sj(t)

Pij

=
1
2

b∑
�=1

|C�|
∑

i∈C�,j 	∈C�
Pij

|C�|

≥ nΦk(P)
2

∆= npk. (3.10)

3.3 Multi-Piece Dissemination 37

In the analysis above, we have utilized the fact that t ∈ [Lk,Lk+1) and
hence the maximal type-class size, A(t) ≤ k. This provides a lower
bound on the expected total dimension increase during any round
in the period [Lk,Lk+1). Note that this lower bound holds for any
t ∈ [Lk,Lk+1) uniformly. Define

Zk(t) =
t−1∑

s=Lk

(F (s) − npk)1{s<Lk+1}, (3.11)

where Zk(Lk) = 0. For t ≥ Lk, Zk(t) is a submartingale, i.e.,

E[Zk(t + 1) | Zk(t)] ≥ Zk(t). (3.12)

The quantity Lk+1 is a stopping time with respect to the history of the
algorithm. It is easy to show that E[Lk+1] < ∞ via a stochastic upper
bound using a certain geometric random variable with positive proba-
bility. Moreover, the submartingale Zk(t) has bounded increments. A
stopped submartingale is a submartingale, and hence we obtain

E[Zk(Lk+1)] ≥ E[Zk(Lk)] = 0. (3.13)

Now, from the definitions of Lk,Lk+1,Yk,Yk+1, and (3.13), we obtain

E[Yk+1 − Yk] ≥ npkE[Lk+1 − Lk]. (3.14)

Recall that Ln is the time when all nodes can decode all the messages.
Summing the inequality in (3.14) for all 1 ≤ k ≤ n − 1 yields

E[Ln] ≤
n−1∑
k=1

E[Yk+1 − Yk]
npk

. (3.15)

From Lemma 3.3 and the fact that pk is monotonically non-increasing
in k, the quantity in the right-hand side of the inequality in (3.15) is
maximized when Yk = k(k − 1). Hence,

E[Ln] ≤
n−1∑
k=1

2k

npk

=
2Φ̂(P)

n
. (3.16)

38 Information Dissemination

By Markov’s inequality, the inequality in (3.16) implies that

Pr(Ln > 4Φ̂(P)/n) < 1/2.

Now, for the purpose of analysis, consider dividing time into epochs
of length 4Φ̂(P)/n, and executing the information dissemination algo-
rithm from the initial state in each epoch, independently of the other
epochs. The probability that, after log ε−1 epochs, some execution of
the algorithm has run to completion in its epoch is greater than 1 − ε.
Using the running time of this virtual process as a stochastic upper
bound on the running time of the actual algorithm, we conclude that

T all
spr(ε) = O

(
Φ̂(P) logε−1

n

)
.

3.3.2 Applications

Here, we describe application of the Gossip algorithm for multi-piece
information dissemination on various relevant network graphs.

3.3.2.1 Complete graph

As before, for the complete graph we consider the natural probability
matrix P = [1/n]. For such a matrix, as explained in Preliminaries,
Φ̂(P) = O(n2 logn). Therefore, T all

spr(ε) = O(n logn log ε−1). That is, for
ε = Ω(1/poly(n)) we have T one

spr (ε) = O(n log2 n). This is only log2 n

‘slower’ compared to the ‘fastest’ possible time of Θ(n) because each
node can receive at most one message in a time-slot. Thus, the natural
Gossip algorithm spreads information essentially as fast as possible on
the complete graph.

3.3.2.2 Ring graph

For the ring graph of n nodes, as before we consider the following
probability matrix P : for each i, Pii = 1/2, Pii+ = Pii− = 1/4 where
i+ and i− represent neighbors of i on either side. As established in
Preliminaries, Φ̂(P) = Θ(n3). Therefore, for ε = Ω(1/poly(n)) we have
T all

spr(ε) = O(n2 logn). Now, the ring has diameter n, and by ‘proper’

3.4 Summary and Historical Notes 39

scheduling (everyone passes new messages to the left) it is indeed pos-
sible to spread all data to all nodes in time O(n). Thus, the above
algorithm seem to be ‘slower’ by a factor of n compared to the best
possible. We believe that this is due to weakness of the analytic method
presented here and not the algorithm.

3.3.2.3 Expander graph

The expander graph, like the complete graph, has Φ̂ = (n2 log n).
Therefore, T all

spr(ε) = O(n log n) for ε = Ω(1/poly(n)). That is, the
Gossip algorithm performs essentially as fast as possible.

3.4 Summary and Historical Notes

Here, we described Gossip based information dissemination algorithms
for the single-piece and many-piece dissemination scenarios. These
are the simplest possible natural algorithms. We presented a detailed
analysis for the information spreading time in both single-piece and
many-piece scenarios. We found that the spreading time depends on
the different spectral properties of the graph: for the single-piece sce-
nario it is the conductance and for the multi-piece scenario it is the
‘harmonic-like’ mean of k-conductances. The analysis presented here for
single-piece information spreading is based on work by Mosk-Aoyama
and Shah [55] and the analysis for multi-piece spreading is based on
another work by Mosk-aoyama and Shah [54]. It should be noted that
though here for multi-piece information spreading we use a ‘BitTorrent-
like’ scheme, one can use a ‘network coding’ based approach as well (see
[54] for details).

Historically, the analysis of multi-piece information spreading for
BitTorrent like systems was studied using a ‘mean-field’ approximation
by Qiu and Srikant [59] as well as Massoulie and Vojnovic [47]. The
use of network coding for efficient gossiping was introduced by Deb
et al. [14] for the complete graph.

4
Linear Computation

4.1 Setup

We are given a connected network of n nodes with connectivity graph
G = (V,E). Each node i ∈ V has its own real value xi ∈ R. Let x = [xi]
be the vector of these n numbers. The quantity of interest is the average
of these n numbers, denoted by xave, where xave =

∑n
i=1 xi/n = xT1/n.

This question of computing averages in a distributed manner arises in
many applications including distributed estimation, distributed control
(popularly known as consensus), and distributed optimization.

A natural iterative and distributed algorithm for computing xave is
based on linear dynamics. To this end, let time be discrete (or slotted)
and indexed by t ∈ N. Let y(t) = [yi(t)] denote the vector of estimates
at nodes of G at time t. Initially, t = 0 and y(0) = x. The estimates
at time t + 1, y(t + 1) are obtained from y(t) by selecting an n × n

matrix W (t) = [Wij(t)] ∈ Rn×n
+ and performing a linear update

y(t + 1) = W (t)y(t).

That is, each node j sends the value Wij(t)yj(t) to node i; upon
receiving these values from the nodes (including from itself), node
i sums them up to form its updated estimate yi(t + 1). To make

40

4.1 Setup 41

such an algorithm distributed with repsect to the network graph G,
we require that W (t) be graph conformant, i.e., if (i, j) /∈ E then
Wij(t) = Wji(t) = 0. From results on products of matrices [20] it fol-
lows that if W (t) belongs to a finite set of paracontracting matrices (i.e.,
W (t)y �= y ⇔ ‖W (t)y‖ < ‖y‖) then y(t) → y∗ where y∗ ∈ ∩i∈IH(Wi).
Here, I = {i: Wi appear infinitely often in the sequence W (t)} and
for i ∈ I, H(Wi) denotes the eigenspace of Wi associated with eigen-
value 1. Therefore, to guarantee convergence to xave1, the algorithms
considered here will choose W (t) with 1 as an eigenvector with
eigenvalue 1.

4.1.1 Example Algorithm

Here, we present an example of a linear dynamics based algorithm
that belongs to the class of algorithms described above. Specifically, we
describe a time-invariant algorithm, i.e., W (t) = W . The choice of W

is done in a very simple manner based on the well known Metropolis–
Hasting method. Specifically, for each node i ∈ V ,

Wij =


1
2d , if j �= i and (i, j) ∈ E,

0, if j �= i and (i, j) /∈ E,

1 − di
2d , if j = i.

Here di denotes the degree of node i ∈ V and d = maxi∈V di. It is well-
known that 1 is an eigenvector of W = [Wij] thus defined with cor-
responding eigenvalue 1, which is the largest possible value. Further,
since G is connected it defines an irreducible, aperiodic random walk
on G. Therefore, it follows that

y(t) = W ty(0) = W tx → xave1, as t → ∞.

Thus the above class of linear dynamics based algorithms is indeed
non-empty and it is quite easy to find an algorithm, i.e., a matrix W

with the desired properties.

4.1.2 Quantity of Interest

Our interest is in finding a good estimate of xave as quickly as possible
using the linear dynamics based algorithm. To this end, for any ε > 0

42 Linear Computation

define the ε-computation time, denoted by Tave(ε), as

Tave(ε) = sup
x∈Rn

inf
{

t: Pr
(‖y(t) − xave1‖

‖x‖ ≥ ε

)
≤ ε

}
. (4.1)

The probability in the above definition is with respect to possible ran-
domness in the algorithm (i.e., the randomness in selection of sequence
W (t), t ∈ N).

The algorithm performs a total of |W (t)|o ∆= |{(i, j): Wij(t) �= 0}|
computations in the time slot t. Therefore, the total computation per-
formed to obtain an ε approximation (with probability at least 1 − ε)
of xave at all nodes is

Cave(ε)
∆=

Tave(ε)−1∑
t=0

|W (t)|o.

Our goal is to design an algorithm, that is to choose a W (t), t ∈ N,

so that ideally both Tave(ε) and Cave(ε) are minimized. In Gossip
algorithms, it is reasonable to assume that all nodes are perform-
ing some computation in each time slot. Therefore, we will have
|W (t)|o = Ω(n) for all t. That is, Cave(ε) = Ω(nTave(ε)). In what fol-
lows, we first consider randomized algorithms that indeed incur a cost
Cave(ε) = Θ(nTave(ε)). Therefore in such algorithms, the goal will be to
minimize Tave(ε). We will characterize the Tave(ε) for these algorithms
and relate them to the ‘mixing time’ of certain reversible random walk
on the graph G. This leads to the conclusion that for graphs with good
expansion property the randomized algorithms are essentially optimal
in terms of Tave(ε) as well. Thus, randomized algorithms will be optimal
both in terms of Tave(ε) and Cave(ε) for graphs with good expansion
property.

In contrast, for graphs with ‘geometry’ (e.g., ring graph) the com-
putation time Tave(ε) can be quite poor due to its relation to the mixing
time of reversible random walk. To overcome this limitation, we con-
sider determinstic linear dynamics in the second part. We present a
time-invariant deterministic algorithm, i.e., W (t) = W for all t ∈ N,
that has optimal Tave(ε) and near optimal Cave(ε) for graphs with
‘geometry’. This algorithm is built upon certain non-reversible ran-
dom walk on graph G. As a by product, this construction provides the

4.2 Randomized Algorithms and Reversible Random Walks 43

fastest mixing random walk (Markov chain) on a graph G with mixing
time being of the order of the diameter of G.

4.2 Randomized Algorithms and Reversible Random Walks

This section describes an algorithm where W (t) is chosen randomly in
each time t ∈ N. The Tave(ε) of this randomized algorithm will relate
to the mixing time of a reversible random walk. Therefore, the perfor-
mance of this algorithm will be effectively characterized by reversible
random walks.

4.2.1 Algorithm

Let P = [Pij] be any n × n doubly-stochastic matrix that is network
graph G conformant. Here, we assume that P is symmetric, i.e.,
Pij = Pji for all i, j. We assume that P is chosen such that it is aperi-
odic and irreducible. That is, a random walk with P as its transition
matrix on G is ergodic and has the uniform distribution on G as its
unique stationary distribution. We will call P the probability matrix
corresponding to the algorithm, because we will choose W (t) according
to an i.i.d. distribution with E[W (t)] related to P . Now we describe the
distribution from which W (t) is chosen. By Birkhoff-Von Neumann’s
theorem(e.g. [30]), a non-negative doubly-stochastic matrix P can be
decomposed into at most n2 (n2 − 2n + 1 to be precise) permutation
matrices:

P =
n2∑

m=1

αmΠm, αm ≥ 0,

n2∑
m=1

αm = 1.

Define a random (matrix) variable Π with distribution

Pr(Π = Πm) = αm, 1 ≤ m ≤ n2.

As part of the algorithm, we sample a permutation matrix as per the
distribution of Π every time t ∈ N independently. Let Π(t) be the per-
mutation matrix sampled at time t. The Π(t) can be thought of as a
‘directed’ matching of vertices: i is matched to j if Πij(t) = 1. Here i

matched to j (Πij(t) = 1) is different from j matched to i (Πji(t) = 1).

44 Linear Computation

As part of the algorithm, if i is matched to j at time t (i.e., Πij(t) = 1)
then i updates its estimate by setting it to be the average of its own
current estimate and that of j. That is, yi(t + 1) = (yi(t) + yj(t))/2. In
matrix form, this corresponds to

y(t + 1) =
1
2

(I + Π(t))y(t).

That is, W (t) = (I + Π(t))/2. This completes the description of the
algorithm. Note that exactly two operations per node and 2n total
operations are performed in each time t in the whole network.

4.2.2 Performance

Here, we characterize Tave(ε) of the above stated randomized algorithm.
Later, we shall relate it to the mixing time of a random walk on G with
transition matrix given by (I + P)/2.

Theorem 4.1. For any ε ∈ (0,1/2), the ε-computation time of the
randomized algorithm based on P described above is bounded by

0.5log(3ε)−1

logλ−1 ≤ Tave(ε) ≤ 3logε−1

logλ−1 ,

where λ = 1
2(1 + λ2(P)).

The proof of Theorem 4.1 is stated in terms of upper bound and
lower bounds separately, next.

4.2.2.1 Upper bound

Recall that, under the randomized algorithm, we have

y(t + 1) = W (t)y(t), (4.2)

where for a random permutation matrix Π(t)

W (t) =
1
2

(I + Π(t)) . (4.3)

4.2 Randomized Algorithms and Reversible Random Walks 45

Note that W (t) is a doubly stochastic matrix for all t. That is, it
preserves the �1 norm across t, i.e.

y(t)T1 = y(0)T1 =
n∑

i=1

xi. (4.4)

We wish to bound how quickly y(t) → xave1. That is, we wish to find
out how quickly, the ‘error’ z(t) ∆= y(t) − xave1 goes to 0 in terms of
its �2 norm. For this, we will compute the expectation of z(t)Tz(t) and
use Markov’s inequality to obtain the desired conclusion.

To this end, let us first compute E[z(t)Tz(t)]. Recall that, z(t) =
y(t) − xave1 and W (t)1 = 1. Therefore,

W (t)z(t) = W (t)y(t) − xaveW (t)1 = y(t + 1) − xave1 = z(t + 1).

Therefore, for any t > 0

z(t)Tz(t) = z(t − 1)T W (t − 1)T W (t − 1)z(t − 1). (4.5)

Now, W (t − 1) is independent of z(t − 1). Therefore,

E[z(t)Tz(t)|z(t − 1)]

= z(t − 1)TE[W (t − 1)T W (t − 1)]z(t − 1). (4.6)

Due to the time-invariance of the distributions of W (·), we have that
E[W (t − 1)T W (t − 1)] = E[W (0)T W (0)]. Consider the following.

W (0)T W (0) =
1
4
(
I + Π(0)T

)
(I + Π(0))

=
1
4
(
2I + Π(0) + Π(0)T

)
. (4.7)

Therefore,

W
∆= E[W (0)T W (0)] =

1
2
(
I + P

)
, (4.8)

we recall that P = (P + P T)/2. Since P is symmetric, we have P = P .
The doubly stochasticity of P implies that of W . Similarly, irreducibil-
ity and aperiodicity of P implies that of W . Hence, 1 is the eigenvector
with the unique largest eigenvalue 1 of W . W is a symmetric matrix.
By the variational characterization of eigenvalues, it follows that

z(t − 1)T Wz(t − 1) ≤ λz(t − 1)Tz(t − 1), (4.9)

46 Linear Computation

where λ is the second largest eigenvalue of W . It should be noted that
all eigenvalues of W are non-negative due to its form (4.8). Also it
follows from the property of eigenvalues that

λ =
1
2

(1 + λ2(P)) ,

where λ2(P) is the second-largest eigenvalue of P .
Now recursive application of (4.5) and (4.9) yields

E[z(t)Tz(t)] ≤ λtz(0)Tz(0). (4.10)

Now,

z(0)Tz(0) = xTx − nx2
ave

≤ xTx. (4.11)

From (4.10), (4.11) and an application of Markov’s inequality, we have

Pr
(‖y(t) − xave1‖

‖x‖ ≥ ε

)
= Pr

(
z(t)Tz(t)

xTx
≥ ε2

)
≤ ε−2E[z(t)Tz(t)]

xTx

= ε−2λt. (4.12)

From (4.12), it follows that

Tave(ε) ≤ 3logε−1

logλ−1 =
3logε

logλ
.

This completes the proof of upper bound claimed in Theorem 4.1.

4.2.2.2 Lower bound

Here, we present the proof of lower bound on Tave(ε) claimed in The-
orem 4.1. Recall from the arguments above that z(t + 1) = W (t)z(t).
Therefore,

E[z(t)] = W
tz(0). (4.13)

By definition, W = (I + P)/2 and hence it is a symmetric positive-
semidefinite doubly stochastic matrix. It is irreducible and aperiodic as
well. Hence it has non-negative real valued eigenvalues

1 = λ1(W) > λ2(W) ≥ ·· · ≥ λn(W) ≥ 0,

4.2 Randomized Algorithms and Reversible Random Walks 47

and corresponding orthonormal eigenvectors 1√
n
1, v2, . . . ,vn. Select

x =
1√
2

(
1√
n
1 + v2

)
⇒ z(0) =

1√
2
v2.

For this choice of x, ‖x‖ = 1. Now from (4.13),

E[z(t)] =
1√
2
λtv2, (4.14)

where as per earlier notation λ = 1
2(1 + λ2(P)) = λ2(W). For this par-

ticular choice of x, we are going to lower bound the ε computation time
by lower bounding E[‖z(t)‖2] and using Lemma 4.2 as stated below.
By Jensen’s inequality and (4.14),

E[z(t)Tz(t)] ≥
n∑

i=1

E[zi(t)]2

= E[z(t)]TE[z(t)]

=
1
2
λ2t(W)vT

2 v2

=
1
2
λ2t. (4.15)

Lemma 4.2. Let X be a random variable such that 0 ≤ X ≤ B. Then,
for any 0 < ε < B,

Pr(X ≥ ε) ≥ E[X] − ε

B − ε
.

Proof.

E[X] ≤ εPr(X < ε) + BPr(X ≥ ε)

= Pr(X ≥ ε)(B − ε) + ε.

Rearranging terms gives us the lemma.

From (4.14), ‖z(t)‖2 ≤ ‖z(0)‖2 ≤ 1/2. Hence Lemma 4.2 and (4.15)
imply that for ε ∈ (0,1/2)

Pr(‖z(t)‖ ≥ ε) > ε, (4.16)

48 Linear Computation

for

t ≤ 0.5log(3ε)−1

logλ−1 .

This implies the desired lower bound in Theorem 4.1.

4.2.3 Relation to Mixing Time

We describe the relation between the ε-computation time, Tave(ε) of
the randomized algorithm based on P and the ε-mixing time based
on total variation distance, τ(ε,W) (defined in Preliminaries), of the
random walk on G with transition matrix given by W = (I + P)/2.

Theorem 4.3. Let ε = n−δ for some δ > 0. Then Tave(ε) of the ran-
domized algorithm based on P and the mixing time τ(ε,W) of the
random walk with transition matrix W are related as

Tave(ε) = Θ
(
logn + τ(ε,W)

)
.

Proof. Recall that W = (I + P)/2 has all eigenvalues non-negative and
real valued. Therefore, the second largest (in norm) eigenvalue, λ of
W is equal to (1 + λ2(P))/2. Since P has non-negative entries, and
hence the trace of P is non-negative, the sum of all eigenvalues of P is
non-negative. Since the largest eigenvalue has value 1, it must be that
λ2(P) ≥ −1/n. Therefore, λ ≥ (1 − 1/n)/2 ≥ 1/4 for all n ≥ 2 and a
network must have at least two nodes! Now, for any x ∈ (0,1) it follows
that

x

2
≤ log(1 + x) ≤ x ⇒ log(1 + x) = Θ(x).

Given this, it follows that

logλ = log(1 − (1 − λ)) = Θ(1 − λ).

Therefore,

Tave(ε) = Θ
(

log ε−1

1 − λ

)
.

4.2 Randomized Algorithms and Reversible Random Walks 49

For ε = n−δ, it follows that Tave(ε) = Ω(logn). Also, for such an ε,

Tave(ε) = Θ
(

log ε−1 + log n

1 − λ

)
= Ω(τ(ε,W)), (4.17)

where the last inequality follows from Preliminaries. From the two lower
bounds on Tave(ε), we have for ε = n−δ

Tave(ε) = Ω(log n + τ(ε,W)). (4.18)

Use of the lower bound on mixing time in terms of the spectral gap for
reversible random walks as explained in Preliminaries, suggests that
for the choice of ε = n−δ,

τ(ε,W) = Ω
(

logε−1

1 − λ

)
= Ω(logn).

Therefore, from (4.17) it follows that

Tave(ε) = O(logn + τ(ε,W)).

This completes the proof of Theorem 4.3.

Figure 4.1 is a pictorial description of Theorem 4.3. The x-axis
denotes the mixing time and y-axis denotes the computation time.

Fig. 4.1 Graphical interpretation of Theorem 4.3.

50 Linear Computation

The plot assumes ε = n−δ for some δ > 0. The scale of the axis
is in order notation. As shown in the figure, for P such that
τ(ε,W) = o(logn), Tave(ε) = Θ(logn); for P such that τ(ε,W) =
Ω(logn), Tave(ε) = Θ(τ(ε,W)). Thus the mixing time of the random
walk based on W essentially characterizes the computation time of the
algorithm.

Remark 4.1. If one utilized a deterministic algorithm, i.e., using
W (t) = W every time, then the convergence will be dictated by τ(ε,W).
Thus, Theorem 4.3 suggests that by using randomization, the compu-
tation time suffers a minor additive penalty of log n; but it potentially
saves computations per iteration. Specifically the deterministic algo-
rithm based on W will require |W |o operations per iteration compared
to Θ(n) operations per iteration under randomized algorithm.

4.2.4 Applications

Here we will utilize Theorems 4.1 and 4.3 to evaluate the performance
of randomized algorithms on various graph models. We describe appli-
cations to four classes of graph models as stated below.

4.2.4.1 Complete graph

The complete graph represents situation when all nodes can commu-
nicate with each other. That is, essentially no graphical communica-
tion constrains. For a complete graph of n nodes, a natural symmetric
probability matrix is P = [1/n], i.e., all entries being equal to 1/n.
For such a matrix, as explained in Preliminaries, the τ(ε,P) = O(1)
for all ε > 0. Therefore, by Theorem 4.3 the Tave(ε) = O(logn) for all
ε = Ω(1/poly(n)). That is, the randomized algorithm performs essen-
tially as fast as possible; both in terms of Tave(ε) and total cost, Cave(ε).

4.2.4.2 Ring graph

The ring graph of n nodes is formed by placing n nodes on a circle (or
a ring) and connecting each node to two of its nearest neighbors. This

4.3 Deterministic Algorithms and Non-Reversible Random Walks 51

is essentially the most communication constrained graph. For a ring
graph of n nodes, a natural symmetric probability matrix P , obtained
by the Metropolis Hasting method, is as follows: for each i, Pii = 1/2,
Pii+ = Pii− = 1/4 where i+ and i− represent neighbors of i on either
side. As established in Preliminaries, the mixing time τ(ε,P) = Ω(n2)
for any ε ∈ (0,1/2) and is O(n2 logn) for ε = Ω(1/poly(n)). Therefore,
Tave(ε) essentially scales as n2 and Cave(ε) scales as n3. This clearly
seems wasteful as a simple graph like a ring should have Tave(ε) more
like n and not n2. As we shall discuss in the next section, this waste is
inherently due to P being symmetric.

4.2.4.3 Expander graph

As before, consider d-regular expander graphs. The natural probability
matrix P has mixing time τ(ε,P) = O(logn) for ε = Ω(1/poly(n)) as
discussed in Preliminaries. Thus, again Tave(ε) = O(logn) for all ε =
Ω(1/poly(n)). That is, the randomized algorithm performs essentially
as fast as possible; both in terms of Tave(ε) and the total cost, Cave(ε)
(which is O(n logn)).

4.2.4.4 Geometric random graph

The Geometric random graph over n nodes is formed by placing
nodes uniformly at random in a geographic area and then connecting
nodes within distance r = r(n), the connectivity radius. Recall that the
detailed description is provided in Preliminaries. As established there,
the natural random walk has the fastest possible mixing time scaling as
n/r2. However, the diameter of G(n,r) is of order

√
n/r. This suggests

that the randomized algorithm is wasteful in such graphs.

4.3 Deterministic Algorithms and Non-Reversible
Random Walks

The randomized algorithm described above has Tave(ε) essentially
scaling like the mixing time. Though it performs minimal Θ(n) opera-
tions per unit time, its Tave(ε) can be rather poor for certain graphs.
Specifically, for a complete graph or more generally graphs with good

52 Linear Computation

expansion, the randomized algorithm performs almost optimally both
in terms of Tave(ε) and hence Cave(ε). However, for graphs with ‘geom-
etry’, like the ring or the geometric random graph, it performs rather
poorly. And, most graphs arising in practice involving wireless net-
works or physical entities do have ‘geometry’, such as wireless sensor
networks deployed in some geographic area [8, 18] or a nearest neighbor
network of unmanned vehicles [63]. In this section, we will put forth a
determinstic algorithm based on a novel construction of random walks
on geometric graphs to overcome the inefficiency of the randomized
algorithm. Before we proceed further, some understanding of inherent
reasons for the inefficiency of the randomized algorithm will be useful.

Now the poor performance of the randomized algorithm on graphs
with geometry is inherently related to the poor mixing property of
the symmetric random walks on such graphs. To this end, recall from
Preliminaries that for any random walk with transition matrix P , its
mixing time is bounded as

1
Φ(P)

≤ H(P) ≤ O

(
logn

Φ2(P)

)
.

In general, in most graphs with geometry that are of interest, the mix-
ing time of the reversible walk P scales like 1/Φ2(P). The conductance
Φ(P) relates to diameter D of a graph G as 1/Φ(P) ≥ D. Therefore, in
such situations the mixing time of a reversible random walk is likely to
scale like D2, the square of the diameter. Indeed, Diaconis and Saloff-
Coste [17] established that for a class of graphs with geometry (i.e.,
polynomial growth or finite doubling dimension) the mixing time of
any reversible random walk scales like at least D2 and it is achieved
by the Metropolis–Hastings’ approach. Thus, reversible random walks
result in rather poor performance for graphs with geometry, i.e. its
mixing time is far from the best hope, the diameter D. This suggests
that in order to design an efficient linear dynamics based algorithm on
graphs with ‘geometry’, we need to look for an algorithm that relates
to non-reversible random walks on the graph. It should be noted that
Theorem 4.1 implies that even for non-symmetric (i.e., non-reversible)
P the bound on Tave(ε) is governed by the second largest eigenvalue of
(or mixing time corresponding to) 1

2(I + P/2 + P T /2), which is sym-

4.3 Deterministic Algorithms and Non-Reversible Random Walks 53

metric. Therefore, it is essential to consider a non-randomized, i.e.,
deterministic algorithm. Next, we describe a motivating example of a
fast mixing random walk design based on non-reversibility.

4.3.1 Non-Reversible Random Walk: An Example

The example we describe here is based on work by Diaconis et al. [16].
They introduced a clever construction of a non-reversible random walk
on the ring (and more generally ring-like) graph. To this end, consider
Figure 4.2(a) which describes the symmetric random walk on a ring.
The non-reversible random walk constructed in [16] runs on the lifted
ring graph, which is denoted G2 in Figure 4.2(b). Here, by lifting we
mean making additional copies of the nodes of the original graph and
adding edges between some of these copies while preserving the orig-
inal graph topology. Figure 4.2(b) explains their construction for the
ring graph. Note that each node has two copies and the lifted graph
is essentially composed of two rings: an inner ring and an outer ring.
The transition on the inner circle forms a clockwise circulation and
the transition on the outer circle forms a counterclockwise circulation.
And the probability of changing from the inner circle to the outer cir-
cle and vice versa are 1/n at each time. By defining transitions in this
way, the stationary distribution is also preserved, i.e., the sum of sta-
tionary distributions of copies is equal to their original one. Somewhat

1/2

1/2

1/4

1/4 1-1/n

1-1/n

1/n

1/n

(a) (b)

Fig. 4.2 (a) Symmetric P on the ring graph G1. (b) Non-reversible P ′ on the lifted ring
graph G2.

54 Linear Computation

surprisingly, they showed that this non-reversible random walk has lin-
ear mixing time O∗(n).1 Thus, effectively (i.e., upto log n factor) the
mixing time scales like diameter n. It should be noted that because
lifting preserves the graph topology and the stationary distribution, it
is possible to simulate this lifted random walk on the original graph by
expanding the state appropriately. Equivalently, if used for linear aver-
aging it is possible to use lifted random walks by running iterations
with extra states.

4.3.2 Non-Reversible Random Walks: General Graph

Given graph G and a symmetric doubly stochastic matrix P (say,
obtained by Metropolis–Hasting method), here we describe a construc-
tion of a ‘lifted graph’ Ĝ and a non-reversible random walk with tran-
sition matrix P̂ on Ĝ so that the mixing time of P̂ is of the order of
the diameter D of G. This construction will result in an increase in the
size of Ĝ, i.e., increase in |P̂ |o compared to |P |o. Later we will impro-
vise over this construction for graphs with ‘geometry’ to obtain P̂ with
|P̂ |o close to |P |o. First, we formally define the notion of lifting, called
‘Pseudo-lifting’.2

Definition 4.1(Pseudo-Lifting). A graph Ĝ = (V̂ , Ê) and a random
walk P̂ on it are called a pseudo-lifting of graph G = (V,E) and random
walk P if there exists a many-to-one function f : V̂ → V , T ⊂ V̂ with
|T | = |V | such that the following holds: (a) for any û, v̂ ∈ V̂ , (û, v̂) ∈
Ê only if (f(û),f(v̂)) ∈ E, and (b) for any u ∈ V , π̂(f−1(u) ∩ T) =
(1/2)πu,3 where π and π̂ are the stationary distributions of P and P̂ ,
respectively.

As we shall see later, due to property (a) in the definition it will
be possible to simulate the pseudo-lifting P̂ in the original graph G

in a distributed manner, i.e., run a linear dynamics based on P̂ on G

1 For a function f : N → R+, O∗(f(n)) := O(f(n)poly(log n)).
2 It is not called lifting because, the term lifting was used in [16] differently and Pseudo-
lifting used here is in a sense a ‘relaxation’ of lifting.

3 In fact, 1/2 can be replaced by δ for any constant δ ∈ (0,1).

4.3 Deterministic Algorithms and Non-Reversible Random Walks 55

using message exchanges local to G. Furthermore, property (b) sug-
gests that (by concentrating on set T), it is possible to simulate the
uniform distribution exactly using the pseudo-lifting. Next, we present
a construction of a pseudo-lifting with mixing time of order of D, the
diameter of G.

4.3.2.1 Construction

For a given random walk P , we will construct the pseudo-lifted random
walk P̂ of P . It may be assumed that P is given by the Metropolis–
Hasting method. Without loss of generality (or rather to achieve gener-
ality), here we assume P to be the transition matrix of a random walk
with an arbitrary stationary distribution π = [πi]. Note that when spe-
cialized to π = (1/n)1, we obtain the P̂ of interest. In what follows, we
will construct the pseudo-lifted graph Ĝ by adding vertices and edges
to G, and decide the values of the ergodic flows Q̂ on Ĝ, which defines
its corresponding random walk P̂ , since recall that ergodic flow along
an edge (û, v̂) is π̂uP̂ûv̂.

To this end, first select an arbitrary node v. Now, for each w ∈ V ,
there exist paths Pwv and Pvw, from w to v and v to w, respectively.
We will assume that all the paths are of length D: this can be achieved
by repeating the same node or using self-loops. Now, we construct a
pseudo-lifted graph Ĝ starting from G.

First, create a new node v′ which is a copy of the chosen vertex v.
Then, for every node w, add directed paths P ′

wv, a copy of Pwv, from
w to v′. Similarly, add P ′

vw (a copy of Pvw) from v′ to w. Each addition
creates D − 1 new interior nodes. Thus, we have essentially created a
virtual star topology using the paths of the old graph and added O(nD)
new nodes (note that, every new node is a copy of an old node).

Now, we define the ergodic flow Q̂ for this graph Ĝ as follows: for
an edge (i, j),

Q̂ij =

{
δ

2Dπw, if (i, j) ∈ E(P ′
wv) or E(P ′

vw)

(1 − δ)Qij , if (i, j) ∈ E(G),

where δ ∈ (0,1) is a constant, that will be decided later. It is easy to
check that

∑
ij Q̂ij = 1,

∑
j Q̂ij =

∑
j Q̂ji. Hence it defines a a random

56 Linear Computation

walk on Ĝ. The stationary distribution of this pseudo-lifting is

π̂i =


δ

2Dπw, if i ∈ (V (P ′
wv) ∪ V (P ′

vw))\{w,v′}(
1 − δ + ε

2D

)
πi, if i ∈ V (G)

δ
2D , if i = v′

(4.19)

Given the above definition of Q̂ and corresponding stationary distribu-
tion π̂, it satisfies the pseudo-lifting definition if we choose ε such that
1/2 = ε(1 − (1/2D)) and set T = V (G), i.e., T is the set of old nodes.

4.3.2.2 Mixing time

We claim the following bound on the mixing time of the pseudo-lifting
we constructed.

Theorem 4.4. The mixing time of the random walk P̂ (equivalently,
defined by Q̂) is τ(ε, P̂) = O(D logε−1) for any ε ∈ (0,1).

Proof. We will design a stopping rule where the distribution of the stop-
ping node is π̂, and analyze its expected length. Then, use of the results
from Preliminaries will lead to the bound on τ(ε, P̂). Refer to Prelimi-
naries for details on the use of stopping rule for bounding mixing time.

Now the description of stopping rule. Starting from any node, let
the random walk continue until it reaches v′. Then roll a (four sides)
die X with the following probability.

X =



0, with probability δ
2D

1, with probability δ(D−1)
2D

2, with probability 1 − δ + δ
2D

3, with probability δ(D−1)
2D

Here δ ∈ (0,1) is a constant, whose value will be chosen later. Depend-
ing upon the value of X, the walk will be stopped at a node to be
decided as follows.

• X = 0: Stop at v′. The probability for stopping at v′ is
Pr[X = 0] = δ/2D, which is exactly π̂v′ .

4.3 Deterministic Algorithms and Non-Reversible Random Walks 57

• X = 1: Walk a directed path P ′
vw, and choose an interior

node of P ′
vw uniformly at random, and stop there. For a

given w, it is easy to check that the probability for walking
P ′

vw is πw. There are D − 1 many interior nodes, hence, for
an interior node i of P ′

vw, the probability for stopping at i is

Pr[X = 1] × πw × 1
D − 1

=
δ

2D
πw = π̂i.

• X = 2: Stop at the end node w of P ′
vw. The probability for

stopping at w is

Pr[X = 2] × Pr[walk P ′
vw] =

(
1 − δ +

δ

2D

)
× πw = π̂w.

• X = 3: Walk until getting a directed path P ′
wv, and choose an

interior node of P ′
wv uniformly at random, and stop there.

Until getting a directed path P ′
wv, the pseudo-lifted random

walk defined by Q̂ is same as the original random walk.
Since the distribution w ∈ V (G) of the walk at the end of
the previous step is exactly π, it follows that the distribution
π over the nodes of V (G) is preserved under this walk till
walking on P ′

wv. Calculations similar to those done in the
case X = 1, we find that the probability of stopping at the
interior node i of P ′

wv is π̂i.

Therefore, we have established the existence of a stopping rule
that takes an arbitrary starting distribution to the stationary dis-
tribution π̂. Now, this stopping rule has average length O(D/δ):
since the probability of getting on a directed path P ′

wv at w is
δ

2D/(1 − δ + (δ/2D)) = Θ(δ/D), the expected number of walks until
visiting v′ and getting a directed path when X = 3 are O(D/δ) = O(D)
in both cases. Now, τ(ε, P̂) = O(H(P̂) logε−1) (see Preliminaries).
Therefore, it follows that τ(ε, P̂) = O(D logε−1/δ). Since δ is param-
eter of choice, we obtain that τ(ε, P̂) = O(D logε−1) (e.g., choose
δ = 0.1). This completes the proof.

58 Linear Computation

4.3.3 Non-Reversible Random Walks: The Use of Geometry

The graph topologies arising in practice, such as that of a wireless
sensor network deployed in some geographic area or a nearest neighbor
network of unmanned vehicle [63], possess geometry and are far from
being expanders. A good model for graphs with geometry is a class of
graphs with finite doubling dimension which is defined as follows.

Definition 4.2 (Doubling Dimension). Consider a metric space
M = (X ,d), where X is the set of point endowed with a metric d.
Given x ∈ X , define a ball of radius r ∈ R+ around x as B(x,r) = {y ∈
X : d(x,y) < r}. Define

ρ(x,r) = inf

{
K ∈ N: ∃ y1, . . . ,yK ∈ X ,B(x,r) ⊂

K⋃
i=1

B(yi, r/2)

}
.

Then, the ρ(M) = supx∈X ,r∈R+
ρ(x,r) is called the doubling constant of

M and log2 ρ(M) is called the doubling dimension of M. The doubling
dimension of a graph G = (V,E) is defined with respect to the metric
induced on V by the shortest path metric.

The ring graph has O(1) doubling dimension. The construction of
the previous section leads to P̂ with τ(ε, P̂) scaling as D and |P̂ |o
scaling as nD for a general graph. That is, for a ring graph it will
lead to (explained in detail in the next section) a deterministic linear
computation algorithm with Tave(ε) scaling as n but Cave(ε) scaling
as n3. That is, the Cave(ε) of this algorithm will be the same as that of
randomized algorithm. Therefore, we wish to improve the construction
of the previous section for graphs with geometry, like a ring, by utilizing
their structure in terms of the size of P̂ , i.e., |P̂ |o.

Here, we will design a pseudo-lifting with efficient size for graphs
with finite doubling dimension. To this end, recall that the basic idea for
the construction of the pseudo-lifting is creating a virtual star topology
using paths from every node to a fixed root, and the length of paths
grows the size of the pseudo-lifting. For example, a caricature of this
in the context of ring graph is shown in Figure 4.3(a). To reduce the
overall length of paths, we make clusters of nodes such that nodes

4.3 Deterministic Algorithms and Non-Reversible Random Walks 59

(a) (b)

Fig. 4.3 For a given line graph with n nodes, (a) is the star topology which was used in the
construction of the pseudo-lifted graph in Section 4.3.2.1, and (b) is the hierarchical star
topology which will be used in this section for the new construction of the pseudo-lifting.

in each cluster are close to each other, and pick a sub-root node in
each cluster. Then, we build a star topology in each cluster around
its sub-root and connect every sub-root to the root. This creates a
‘hierarchical’ star topology (or ‘tree’ topology). A caricature example
of such a construction is shown for a line graph in Figure 4.3(b). Since
it needs short path lengths in each cluster, the overall length of paths
decreases.

For a good clustering, we need to decide which nodes would become
sub-roots. A natural candidate for them is the R-net Y ⊂ V of graph
G defined as follows.

Definition 4.3 (R-net). For a given graph G = (V,E), Y ⊂ V is an
R-net if

(a) For every v ∈ V , there exists u ∈ Y such that the shortest
path distance between u and v is at most R.

(b) The distance between any two y,z ∈ Y is more than R.

Such an R-net can be found in G greedily. As explained in the
proof of Lemma 4.6, the small doubling dimension of G guarantees the
existence of a good R-net for our purpose.

60 Linear Computation

4.3.3.1 Construction

For a given random walk P , we will construct the pseudo-lifted random
walk P̂ of P using the hierarchical star topology. As before, let π and
G = (V,E) be the stationary distribution and the underlying graph of
P , respectively. Like the construction in Section 4.3.2.1, the pseudo-
lifted graph Ĝ is constructed by extending G; P̂ is defined by means of
appropriate ergodic flows Q̂ on Ĝ.

Given an R-net Y , match each node w to the nearest y ∈ Y (break-
ing ties arbitrarily). Let Cy = {w| w matched to y} for y ∈ Y . Clearly,
V = ∪y∈Y Cy. Finally, for each y ∈ Y and for any w ∈ Cy we have paths
Pwy,Pyw between w and y of length exactly R. Also, for each y ∈ Y ,
there exists Pyv,Pvy between y and v of length exactly D (we allow the
repetition of nodes to reach this length exactly).

Now, we construct the pseudo-lifted graph Ĝ. As the construction
in Section 4.3.2.1, select an arbitrary node v ∈ V and create its copy v′

again. Further, for each y ∈ Y create two copies y′
1 and y′

2. Now, add
directed paths P ′

wy, a copy of Pwy, from w to y′
1 and add P ′

yv, a copy
of Pyv, from y′

1 to v′. Similarly, add P ′
vy and P ′

yw between v′, y′
2 and

y′
2, w. This construction adds 2D|Y | + 2Rn edges to G, giving Ĝ. Now,

the ergodic flow Q̂ on Ĝ is defined as follows: for any (i, j) of Ĝ,

Q̂ij =


δ

2(R+D)πw, if (i, j) ∈ E(P ′
wy) or E(P ′

yw),
δ

2(R+D)π(Cy), if (i, j) ∈ E(P ′
yv) or E(P ′

vy),

(1 − δ)Qij , if (i, j) ∈ E(G),

where π(Cy) =
∑

w∈Cy
πw and δ ∈ (0,1) is a constant to be decided

later. It can be checked that
∑

ij Q̂ij = 1,
∑

j Q̂ij =
∑

j Q̂ji. Hence it
defines a random walk on Ĝ. The stationary distribution of this pseudo-
lifted chain is

π̂i =



δ
2(R+D)πw, if i ∈ (V (P ′

wy) ∪ V (P ′
yw))\{w,y′

1,y
′
2},

δ
2(R+D)π(Cy), if i ∈ (V (P ′

yv) ∪ V (P ′
vy))\{v′},(

1 − δ(1 − δ
2(R+D))

)
πi, if i ∈ V (G),

δ
2(R+D) , if i = v′.

4.3 Deterministic Algorithms and Non-Reversible Random Walks 61

To establish this as the pseudo-lifting of the original random walk P ,
consider T = V (G) and δ, where 1/2 = δ (1 − 1/(2(R + D))). The Ĝ

has exactly |E| + 2Rn + 2D|Y | edges.

4.3.3.2 Mixing time and size

We analyze performance of the above stated construction of P̂ in terms
of mixing time and size. First, we establish that the mixing time of
O(D) is preserved under this efficient construction.

Lemma 4.5. The mixing time of the random walk P̂ defined by Q̂ is
O(D).

Proof. Consider the following stopping rule. Walk until visiting v′, and
roll a (six sided) die X with the following probability.

X =



0, with probability δ
2(R+D) ,

1, with probability δD
2(R+D) ,

2, with probability δ(R−1)
2(R+D) ,

3, with probability 1 − δ(1 − δ
2(R+D)),

4, with probability δ(R−1)
2(R+D) ,

5, with probability δD
2(R+D) .

Depending on the value of X,

• X = 0: Stop at v′.
• X = 1: Walk on a directed path P ′

vy, and choose its interior
node uniformly at random, and stop there.

• X = 2: Walk until getting a directed path P ′
yw, and choose

its interior node uniformly at random, and stop there.
• X = 3: Walk until getting to an old node in V (G), and stop

there.
• X = 4: Walk until getting a directed path P ′

wy, and choose
its interior node uniformly at random, and stop there.

• X = 5: Walk until getting a directed path P ′
yv, and choose

its interior node uniformly at random, and stop there.

62 Linear Computation

It can be checked, using arguments similar to that in the proof
of Theorem 4.4, that the distribution of the stopped node is pre-
cisely π̂. Also, we can show that the expected length of this stop-
ping rule is O((R + D)/δ) = O(D/δ) = O(D). This is primarily true
because the probability of getting on a directed path P ′

wyatwis

Θ(δ/(R + D)).

Now, we evaluate the size |P̂ |o of this construction for graphs with finite
doubling dimension.

Lemma 4.6. Given a graph G with doubling dimension ρ and diameter
D, the hierarchical construction gives a pseudo-lifted graph Ĝ with size
|Ê| = O(Dn

1− 1
ρ+1).

Proof. The property of the doubling dimension graph implies that there
exists an R-net Y such that |Y | ≤ (2D/R)ρ (cf. [2]). Consider R =
D2

ρ
ρ+1 n

− 1
ρ+1 . This is an appropriate choice because R = D2

ρ
ρ+1 n

− 1
ρ+1 >

Dn
− 1

ρ+1 > n
1
ρ
− 1

ρ+1 > 1 (the second inequality is from n ≤ Dρ). Given
this, the size of the pseudo-lifted graph Ĝ is

|Ê| = |E| + 2Rn + 2D|Y |

≤ |E| + 2D

(
2

ρ
ρ+1

n
1

ρ+1

)
n + 2D

(
2
n

1
ρ+1

2
ρ

ρ+1

)ρ

= |E| + O(Dn
1− 1

ρ+1).

Since |E| = O(n) and D = Ω(n1/ρ), we have that |Ê| = O(Dn
1− 1

ρ+1).

4.3.4 Back to Averaging: Deterministic Algorithm

We wish to compute xave = (
∑

i xi)/n where xi ∈ R is the value of node
i on a given graph G = (V,E). In what follows, we consider xi ≥ 0. This
is without loss of generality since one may run an algorithm to com-
pute the average of non-negative valued and negative valued numbers
separately. Now let P be a doubly stochastic matrix over G of dou-
bling dimension ρ such as the one obtained through the Metropolis–
Hasting method. Let P̂ be the efficient pseudo-lifting of P over the

4.3 Deterministic Algorithms and Non-Reversible Random Walks 63

lifted graph Ĝ = (V̂ , Ê) with stationary distribution π̂ over V̂ . Recall
that each node of V is part of V̂ . Let V (G) ⊂ V̂ denote these nodes
in what follows. Now consider the following deterministic linear algo-
rithm over V̂ based on P̂ . Let ŷ(0) = x̂, with x̂ = [x̂i] where x̂i = xi

for i ∈ V (G) and x̂i = 0 otherwise. Now perform the following iterative
linear computation over Ĝ:

ŷ(t + 1) = P̂ ŷ(t).

The above algorithm is described for graph Ĝ, but our interest is in run-
ning the algorithm over G. Therefore, we describe an implementation
of the above linear algorithm based on P̂ on G.

As noted earlier, V (G) ⊂ V̂ are nodes V of G. Now, under the
above described linear algorithm, each node of V̂ communicates with
its neighbors connected via Ê. But recall û and v̂ are connected in Ĝ

only if they are ‘copies’ of nodes u and v such that (u,v) ∈ E. There-
fore, if each node û ∈ V̂ is ‘simulated’ by node u, where û is a copy of
u, then all communications performed in each iteration based on P̂ can
be performed as local communications over the graph G. That is, G

can indeed implement the linear dynamics based on P̂ in a distributed
manner. Finally, observe that each node in V (G) ⊂ V̂ is hosted at its
corresponding original node in V of G in the above implementation.
Therefore, if each node i ∈ V (G) learns the estimate xave then in the
above implementation each node in V learns the estimate of xave as well.
This completes the description of the algorithm. Now, we describe the
convergence properties of the estimates of nodes in V (G).

Lemma 4.7. Under the above algorithm, consider the estimates of
nodes V = V (G) ⊂ V̂ . That is, for i ∈ V (G) consider ŷi(t). Then,
ŷi(t) → xave/2 as t → ∞. Further, for t ≥ τ(ε/

√
n,P̂) and i ∈ V (G),

|ŷi(t) − xave/2| ≤ ε‖x‖2.

Proof. Since π̂ is the left eigenvector of P̂ with the largest (unit) eigen-
value, i.e., π̂T P̂ = π̂T ; we have

lim
t→∞eT

i P̂ t → π̂T , ∀ i,

64 Linear Computation

where ei is the vector with its ith entry being 1 and the rest being 0.
This implies that, for any i

lim
t→∞ P̂ t

ij = π̂j , ∀ i. (4.20)

Further, by the definition of the mixing time, it follows that for t ≥
τ(ε, P̂), ∣∣∣P̂ t

ji − π̂i

∣∣∣ ≤ ε, ∀ j. (4.21)

Now ŷ(t + 1) = P̂ ŷ(t). That is, ŷ(t) = P̂ tŷ(0). Therefore, for any i

ŷi(t) =
∑

j

P̂ t
ij ŷj(0).

Also, ∑
j

ŷj(0)π̂j =
∑

j∈V (G)

xj π̂j

=
∑

j∈V (G)

xj
1
2n

= xave/2.

In the above equations, we have used the fact that ŷj(0) = 0 if j ∈
V̂ \V (G) and ŷj(0) = xj for j ∈ V (G); π̂j = 1/2n for j ∈ V (G) by defi-
nition of pseudo-lifting. Putting the above together, for i ∈ V (G)

|ŷi(t) − xave/2| =

∣∣∣∣∣∣
∑

j

P̂ t
ij ŷj(0) −

∑
j

π̂j ŷj(0)

∣∣∣∣∣∣
≤
∑

j

ŷj(0)|P̂ t
ij − π̂j |. (4.22)

From (4.20) to (4.22) it follows that for t ≥ τ(ε, P̂) and for i ∈ V (G)

|ŷi(t) − xave/2| ≤ ε
∑

j

ŷj(0)

= ε‖x‖1 = nxave

≤ ε
√

n‖x‖2. (4.23)

In above, we have used the fact that for any non-negative valued
n-dimensional vector x,

√
n‖x‖2 ≥ ‖x‖1. By choosing ε/

√
n in place

of ε we obtain the desired claim and we complete the proof.

4.3 Deterministic Algorithms and Non-Reversible Random Walks 65

Table 4.1 Comparison of the determinstic linear algorithm based on pseudo-lifting with the
randomized algorithm based on Metropolis–Hasting method.

Rand. algo. Det. algo. Optimal

Running time: k-grid
graph

Ω
(

1
Φ2(P)

)
: O∗(n

2
k) O(D) : O(n

1
k) D : n

1
k

Size(dbl. dim.)ρ:
k-grid graph

Θ(n) : Θ(n) O(n
ρ

ρ+1 D) : O(n1+ 1
k(k+1)) n : n

Total # of operations:
k-grid graph

Ω
(

n
Φ2(P)

)
: O∗(n1+ 2

k) O(n
ρ

ρ+1 D2) : O∗(n1+ k+2
k(k+1)) nD : n1+ 1

k

Note: Optimal denotes lower bound for any distributed or message-passing algorithm.

The above suggests that, if we restrict our attention to nodes in V (G),
then their estimates converge to xave. Specifically, let the n-dimensional
vector ỹ(t) = [ỹi(t)] ∈ Rn be defined as ỹi(t) = 2ŷi(t) for i ∈ V (G).
Then, from (4.23) it follows that for t ≥ τ(ε/2n,P̂)

‖ỹ(t) − xave1‖2 ≤ ε‖x‖2. (4.24)

Thus, we have Tave(ε) ≤ τ(ε/2n,P̂). Therefore,

Cave(ε) = O
(|P̂ |oTave(ε)

)
= O

(|P̂ |oτ(ε/2n,P̂)
)
.

This completes the description and analysis of the linear deterministic
algorithm based on P̂ .

4.3.5 Application

Here, we describe application of the non-reversible random walk based
determinstic algorithm described above for a class of graphs with geom-
etry. As discussed above, for graphs with finite doubling dimension, our
algorithm performs well. Specifically, for a graph with doubling dimen-
sion ρ and diameter D, the above results imply that the determinis-
tic algorithm has Tave(ε) scaling as D and Cave(ε) scaling as D times
O∗(Dn1−1/(ρ+1)). Now any algorithm must take O(D) as Tave(ε) and
Cave(ε) as Dn. Thus, the effective ‘loseness’ in our algorithm compared
to any other algorithm is no worse than O(Dn

− 1
1+ρ).

Now the quintessential example of graphs with finite doubling
dimension is the k-dimensional grid; one-dimensional grid being a line
graph (or its symmetrized version is the ring graph). For k-dimensional

66 Linear Computation

grid, the diameter D scales as n1/k. Therefore, for our algorithm
Tave(ε) scales as Θ(n1/k) and the total computation Cave(ε) scales as
O(n1+(1/k)+(1/(k(k+1)))). In contrast, for any algorithm Tave(ε) must
scale at least as n(1/k) and Cave(ε) must scale at least as n1+(1/k).
Thus, for a k-dimensional grid the possible loss in our algorithm is no
more than O(n1/(k(k+1))).

4.4 Summary

We considered linear dynamics based algorithms for the computing
average of numbers in the network graph. First, we described a ran-
domized algorithm in which a random permutation is chosen everytime
so that the effective induced matrix corresponds to a certain symmet-
ric doubly stochastic matrix on the graph. Equivalently, the algorithm
corresponds to a certain randomized pair-wise ‘averaging’ based on
a reversible random walk on the network graph. This algorithm per-
forms minimal number of operations, i.e., on the order of the number of
nodes n, per unit time in any network. The computation time scales as
log n plus the mixing time of a related reversible random walk on the
graph. Therefore, for graphs with ‘good expansion’ such as the com-
plete graph or the constant degree expander, the computation time
is essentially the minimal O(log n). However, this algorithm performs
very poorly over graphs with ‘geometry’. This is because the mixing
time of a reversible random walk is inherently very large on graphs with
geometry.

Motivated to improve performance, we considered algorithms based
on non-reversible random walks. The performance of the randomized
algorithm is inherently related to the reversible random walk, and
hence we considered a deterministic algorithm. This comes at an addi-
tional cost of an increased number of operations per unit time. There-
fore, we considered the question of designing non-reversible random
walks on any graph with minimal mixing time and minimal ‘size’. The
notion of pseudo-lifting led to the design of non-reversible random walks
with mixing times of the order of the diameter and small size. For
graphs with ‘geometry’, i.e., graphs with finite doubling dimension,
this was further improved in terms of size using the graph structure.

4.5 Historical Notes 67

The averaging algorithms based on such non-reversible random walks
take minimal number of iterations of the order of the diameter for
any graph. For graphs with doubling dimension they have near opti-
mal overall computation cost. In summary, the randomized algorithm
is near optimal for graphs with good expansion, i.e., graphs without
geometry; the deterministic algorithm based on a non-reversible ran-
dom walk is near optimal for graphs with geometry.

We note that the deterministic construction based on pseudo-lifted
Markov chain does incur a reasonable (polynomial in n) overhead. How-
ever, this cost can be thought of as amortized over time if the sim-
ilar construction is used for many computations. Now, if topology is
dynamic then it requires re-construction of pseudo-lifted chain often.
Understanding the robustness of the pseudo-lifted chain and construct-
ing pseudo-lifted chain with minimal overhead are natural questions of
interest for future research.

4.5 Historical Notes

The recently emerging network paradigms such as sensor networks,
peer-to-peer networks and surveilance networks of unmanned vehicles
have led to the requirement of designing distributed, iterative and effi-
cient algorithms for estimation, detection, optimization and control.
Such algorithms provide scalability and robustness necessary for the
operation of such highly distributed and dynamic networks. Motivated
by applications of linear estimation in sensor networks [8, 37, 46, 69],
information exchange in peer-to-peer networks [39, 55] and reaching
consensus in a network of unmanned vehicles [6, 32, 63], we considered
the problem of computing the average of numbers in a given network
in a distributed manner. Specifically, we considered the class of algo-
rithms for computing the average using distributed linear iterations.
This approach was pioneered by Tsitsiklis et al. [69]. In the applica-
tions of interest, the rate of convergence of the algorithm strongly affect
its performance. For example, the rate of convergence of the algorithm
determines the agility of the distributed estimator to track the desired
value [8] or the error in the distributed optimization algorithm [56].

68 Linear Computation

This motivated us to consider the rate of convergence as the primary
performance metric for such linear algorithms.

We considered two classes of algorithms: randomized and determin-
stic. The randomized algorithm reported here is based on work by Boyd
et al. [8]. The deterministic algorithm reported here is based on work
by Jung et al. [34].

5
Separable Function Computation

5.1 Setup

As usual, we are given an arbitrary connected network, represented by
an undirected graph G = (V,E), with |V | = n nodes. Two nodes i and j

can communicate with each other if (and only if) (i, j) ∈ E. We assume
that, in a given time-slot each node can contact at most one other node.
However, a node can be contacted by multiple nodes simultaneously.

Let 2V denote the power set of the vertex set V (the set of all subsets
of V). Let x = [xi] ∈ Rn denote a real valued n-dimensional vector.
We call a function f : Rn × 2V → R separable if there exist functions
f1, . . . ,fn such that, for all x ∈ Rn and S ⊆ V ,

f(x,S) =
∑
i∈S

fi(xi). (5.1)

Let F be the class of separable functions f for which fi(x) ≥ 1 for all
x ∈ R and i = 1, . . . ,n. Here, the lower bound of 1 on value of fi(·) is
chosen for simplicity; in general it can be an arbitrary fixed positive
constant.

Here, we wish to consider the question of designing a Gossip algo-
rithm for the following separable function computation problem. Let xi

69

70 Separable Function Computation

denote the initial value of node i ∈ V and x = [xi] represent the vector
of these initial values. Let f ∈ F be a given separable function. Then,
all nodes in V wish to compute an estimate of f(x,V).

Clearly, the separable function computation stated above is equiv-
alent to the following ‘simpler’ summation problem. Each node, say
i ∈ V has value xi ≥ 1. Let x = [xi] denote the vector representation of
these values. All nodes wish to compute an estimate of the summation
xsum =

∑
i xi using a Gossip algorithm as quickly as possible.

5.2 Algorithm

We will describe a Gossip algorithm for the summation problem to esti-
mate xsum at all nodes as quickly as possible. This algorithm will build
on the information dissemination Gossip algorithm described earlier.
We start with the description of a minimum computation algorithm
that utilizes the information dissemination. Next, we state useful prop-
erties of the Exponential distribution. Finally, we will describe the sum-
mation algorithm that is obtained through a combination of computing
the minimum and the properties of the Exponential distribution.

5.2.1 Minimum Computation

We start with the description of a Gossip algorithm for minimum com-
putation based on the information dissemination algorithm. To this
end, let each of the n nodes have distinct non-negative real values: let
ui be the value of node i. All nodes wish to compute u∗ = mini ui.

Let P be a doubly stochastic symmetric network graph G confor-
mant irreducible matrix. Time is discrete and denoted by t ∈ N. At
each time t, each node i contacts its neighbor j ∈ V with probability
Pij ; it does not contact any node with probability Pii. Upon making
contact, both nodes i and j exchange all ‘relevant’ information. Now,
we describe the information exchange aspect in the minimum compu-
tation algorithm.

Let ûi(t) be the estimate of u∗ at node i at time t. Initially, t = 0
and ûi(0) = ui. As described above, at time t if a node i ∈ V con-
tacts another node j then i sends ûi(t) to j and j sends ûj(t) to i.
Upon receiving various estimates, each node i ∈ V sets its new estimate

5.2 Algorithm 71

ûi(t + 1) as the minimum of its own value ûi(t) and all the received
values.

We claim that, under the above described minimum computation
algorithm, all nodes have the correct minimum by time T one

spr (ε) with
probability at least 1 − ε. To see this, suppose that node i ∈ V be
such that u∗ = ui. Then, under the algorithm described the minimum
‘spreads’ in the same manner as in the setting of the single-piece dis-
semination. By definition, by time T one

spr (ε) all nodes will have the single-
piece information with probability at least 1 − ε. Therefore, it follows
that the minimum computation for all nodes under the above algo-
rithm takes no more than T one

spr (ε) with probability at least 1 − ε. By
Theorem 3.1, we have

T one
spr (ε) = O

(
logn + logε−1

Φ(P)

)
.

Finally, consider the problem of computing r different minimums.
Let each node i ∈ V have r distinct values ui(1), . . . ,ui(r). For 1 ≤ � ≤ r,
let

u∗(�) = min
i

ui(�).

Then each node wishes to find out the r different minimums,
u∗(1), . . . ,u∗(r). It should be noted that by an application of the union
bound and a ‘round-robin’ style parallel scheduling of r minimum com-
putation algorithms as describe above, th computation time for r differ-
ent minimums is bounded above by rT one

spr (ε) with probability at least
1 − rε. That is, r different minimums can be computed with probability
at least 1 − ε in time Tmin(r,ε), where

Tmin(r,ε) = O

(
r(logn + logr + logε−1)

Φ(P)

)
. (5.2)

5.2.2 A Useful Extremal Property

We describe an extremal property of Exponential random variables that
will play a crucial role in designing Gossip algorithm for summation.
Formally, we state it as follows.

72 Separable Function Computation

Property 5.1. Let W1, . . . ,Wn be n independent random variables
such that, for i = 1, . . . ,n, the distribution of Wi is Exponential with
rate λi > 0, i.e., E[Wi] = 1/λi. Let W be the minimum of W1, . . . ,Wn.
Then, W is an Exponential random variable of rate λ =

∑n
i=1 λi, i.e.,

E[W] = 1/λ.

Proof. For an Exponential random variable U with rate µ, for any
z ∈ R+,

Pr(U > z) = exp(−µz).

Using this fact and the independence of the random variables Wi, we
compute Pr(W > z) for any z ∈ R+.

Pr(W > z) = Pr(∩n
i=1{Wi > z})

=
n∏

i=1

Pr(Wi > z)

=
n∏

i=1

exp(−λiz)

= exp

(
−z

n∑
i=1

λi

)
.

This establishes the property stated above.

5.2.3 Concentration of the Exponential Distribution

We state the concentration of the empirical mean of i.i.d. Exponential
random variables. This will be useful in determining values of param-
eters in our summation algorithm.

Property 5.2. For any k ≥ 1, let Y1, . . . ,Yk be i.i.d. Exponential ran-
dom variables with rate λ, i.e., E[Y1] = 1/λ. Let their empirical mean
be denoted as Rk, i.e.,

Rk =
1
k

k∑
i=1

Yi.

5.2 Algorithm 73

Then, for any δ ∈ (0,1/2),

Pr
(∣∣∣∣Rk − 1

λ

∣∣∣∣ ≥ δ

λ

)
≤ 2exp

(
−δ2k

3

)
. (5.3)

Proof. By definition,

E[Rk] =
1
k

k∑
i=1

λ−1 = λ−1.

Now the inequality in (5.3) follows directly from the well-known Large
Deviation Principle implied by Cramér’s Theorem (see [15], pp. 30, 35)
for the empirical mean of i.i.d. random variables and the distributional
property of Exponential random variables.

5.2.4 Algorithm: Description and Performance

Now we are ready to describe the algorithm for summation computa-
tion. Recall that each node i has a positive real value xi ≥ 1. Each node
i wishes to compute estimates of xsum. Specifically, suppose all nodes
wish to compute an estimate of xsum within [(1 − δ)xsum,(1 + δ)xsum)]
for some δ > 0. We describe an algorithm that computes the estima-
tion of xsum at all nodes within this δ-accuracy with probability at least
1 − ε for a given ε ∈ (0,1/2).

To this end, let r(ε,δ) = 3δ−2 ln(4/ε). This selection is inspired by
Property 5.2 for δ-accuracy with high enough probability. Inspired by
Property 5.1, each node generates r(ε,δ) random numbers as follows:
node i generates r

∆= r(ε,δ) random numbers yi(1), . . . ,yi(r) by sam-
pling Exponential distribution with parameter xi. For 1 ≤ � ≤ r,

y∗(�) = min
i

yi(�).

All nodes compute these r = r(ε,δ) minimums using the minimum com-
putation algorithm. Let ŷi(�) be the estimate of the minimum y∗(�) at
node i (say after long enough time) for 1 ≤ � ≤ r(ε,δ). Then node i

generates an estimate of xsum as r(
∑r

�=1 ŷi(�))−1. Here, this choice of
estimator is clearly inspired by Property 5.1 with the “confident accu-
racy” supplied by Property 5.2.

74 Separable Function Computation

Now the algorithm for computing r minimums takes O(r(logn +
logr + logε−1)/Φ(P)) with probability at least 1 − ε, for ε ∈ (0,1/2)
as per (5.2). Therefore, for r = r(ε,δ) it takes time O(δ−2 log(nε−1δ−1)/
Φ(P)) for all nodes to compute the minimum with probability at
least 1 − ε/2. From Properties 5.1 and 5.2, after the minimum com-
putation algorithm stops at all nodes, each node has an estimate of
xsum such that it is within [(1 − δ)xsum,(1 + δ)xsum) for all δ ∈ (0,1/2)
with probability at least 1 − ε/2. Therefore, it follows by the union
bound that under the above stated algorithm all nodes have an esti-
mation of xsum within 2δ-accuracy with probability at least 1 − ε after
time O(δ−2 log(nε−1δ−1)/Φ(P)). Therefore, we conclude the following
result.

Theorem 5.1. Let P be an irreducible, doubly stochastic and sym-
metric matrix on graph G. Then, for any ε,δ ∈ (0,1/2) the summation
computation algorithm described above based on P , leads to an esti-
mation of xsum within [(1 − δ)xsum,(1 + δ)xsum] for all nodes in V with
probability at least 1 − ε within time Tsum(ε,δ) where

Tsum(ε,δ) = O

(
logn + logε−1 + logδ−1

δ2Φ(P)

)
.

5.2.5 Applications

Here, we will utilize Theorem 5.1 to evaluate the performance of the
Gossip algorithm for summation or equivalently separable function
computation on various graph models.

5.2.5.1 Complete graph

Recall that the complete graph represents situations when all nodes
can communicate with each other. For a complete graph of n nodes
with natural symmetric probability matrix P = [1/n], as explained
in Preliminaries, Φ(P) = O(1). Therefore, Tsum(ε,δ) = O(δ−2 logn) for
ε = Ω(1/poly(n)). That is, the algorithm performs computation essen-
tially as fast as possible for any fixed δ.

5.3 Summary 75

5.2.5.2 Ring graph

Consider the ring graph of n nodes with a natural symmetric proba-
bility matrix P , obtained by the Metropolis–Hasting method, i.e., for
each i, Pii = 1/2, Pii+ = Pii− = 1/4 where i+ and i− represent neigh-
bors of i on either side. As established in Preliminaries, Φ(P) = O(1/n)
for such P . Therefore, Tsum(ε,δ) = O(δ−2n logn) for ε = Ω(1/poly(n)).
Since the diameter of a ring scales as n, this is again as fast as possible
for any fixed δ.

5.2.5.3 Expander graph

For a d-regular expander with all nodes having degree d, the natural
P has Φ(P) = O(1). Therefore, like the complete graph Tsum(ε,δ) =
O(δ−2 log n) for ε = Ω(1/poly(n)). That is, the algorithm performs
computation essentially as fast as possible for any fixed δ.

5.2.5.4 Geometric random graph

For the geometric random graph over n nodes and connectivity radius
r = r(n) beyond the connectivity threshold, as established in Prelim-
inaries, the natural probability matrix P on it has Φ(P) essentially
scaling as r. Therefore, we will have Tsum(ε,δ) = O∗(δ−2r−1) for
ε = Ω(1/poly(n)). Again, since the diameter of G(n,r) scales like 1/r,
the algorithm performs computation essentially as fast as possible for
any fixed δ.

5.3 Summary

We described a Gossip algorithm for computing separable functions or
equivalently computing the summation of distinct numbers in a net-
work. The algorithm naturally builds over single-piece information dis-
semination by means of a natural minimum computation algorithm.
This is made possible by a probabilistic transformation implied using
an extremal property of the Exponential distribution: computing the
summation can be performed by the computation of certain relevant
minima. The computation time of the algorithm essentially scales as

76 Separable Function Computation

that of the computation of the minimum or as single-piece information
dissemination.

We remark on some features of the algorithm. The minimum com-
putation algorithm can be implemented under a totally asychronous
computational model. Therefore, the algorithm described here is quite
robust with respect to the ‘time-model’. The computation time of the
algorithm is minimal for most of the reasonably regular graphs and
scales like their diameter. The algorithm, as described, does not have a
locally verifiable ‘stopping condition’. However, a natural probabilistic
stopping condition arises as an implication of Theorem 5.1 as follows.
Since Φ(P) for most of the reasonable graphs is no smaller than 1/n,
if a node’s estimate does not change for O(n log n) time slots (with
large enough constant), then its estimate is correct with high enough
probability as long as the number of nodes in the network is no larger
than n.

Now, we remark on a weakness of the algorithm compared to the
linear computation algorithm. Recall that the linear computation algo-
rithm has time scaling proportional to log ε−1 for ε-accurate estimate
with probability at least 1 − ε. That is, it has scaling proportional to
log ε−1 and log δ−1 for δ-accurate estimate with probability 1 − ε. In
contrast, the algorithm describe here has scaling δ−2 and log ε−1 for
δ-accurate estimate with probability 1 − ε. Therefore, the algorithm
decribed here performs rather poorly compared to the linear computa-
ton for very small δ, equivalently very high accuracy.

Next, we remark on the ‘implementation’ of the algorithm. The
algorithm described here requires exchange of ‘real numbers’. However,
any system implementation would require the exchange of bits and not
real numbers. In a recent work by Ayaso et al. (see [3] for a detailed
account of this work) a quantization of this algorithm is proposed. This
leads to a slow-down of the computation time stated in Theorem 5.1 by
a factor of log 1/ε for retaining accuracy within 1 ± ε. We also make a
note of the following. The effective quantization of the linear dynamics
based algorithms is far from clear and satisfactory analysis of the nat-
ural quantization of such algorithms seem non-trivial and is not known
(to the best of author’s knowledge). We refer an interested reader to a

5.4 Historical Notes 77

recent work by Kashyap et al. [35] that proposes a mechanism to make
the linear dynamics based quantized algorithm converge.

Finally, we remark on the ‘optimality’ of the algorithm. Under a
natural probabilistic model, in the recent work Ayaso et al. [3] have
established the optimality of the (quantized version of the) algorithm
in terms of its depedence on the graph structure. Specifically, they
established that any algorithm utilizing information spreading based
on the probability matrix P cannot have a computation time scaling
faster than 1/Φ(P).

5.4 Historical Notes

The key concept behind the algorithm described here is the use of
probabilistic extremal property for separable function. The concentra-
tion of the maximums of independent Geometric random variables was
first used by Flajolet and Martin [23] to count distinct elements in a
database. This idea was further improved by various authors over the
past 25 years. For example, recent works by Considine et al. [12] and
Enachescu et al. [21] build on [23] for approximate computation in sen-
sor databases and sensor networks. The algorithm presented here is
based on work by Mosk-Aoyama and Shah [55].

6
Network Scheduling

Wireless networks are becoming the architecture of choice for designing
ad-hoc networks, metro-area networks and mesh-networks. The tasks
of resource allocation and scheduling are essential for good network
utilization. The multi-access capability of the wireless medium makes
algorithm design for such networks intrinsically different and more chal-
lenging than its wireline counter-part. Further, wireless architectures
require that algorithm be distributed and simple.

Here, we consider a Gossip based algorithm for scheduling nodes
that wish to access a common wireless medium. The algorithm builds
upon the information dissemination and the separable function compu-
tation algorithm along with an additional simple randomized sampling
mechanism. Somewhat surprisingly, this algorithm utilizes the network
capacity to the fullest despite its simplicity.

6.1 Setup

We consider an abstract model of a wireless network represented by a
graph G = (V,E) with |V | = n wireless nodes and edges represented by
E. As before, let N (i) = {j ∈ V : (i, j) ∈ E} denote the set of neighbors

78

6.1 Setup 79

of i ∈ V . We assume that network operates under the classical indepe-
dent set interference model. That is, if a node v is transmitting then
all of its neighbors in N (i) must not transmit at the same time. It
should be noted that other popular combinatorial interference mod-
els are (computationally) equivalent to the independent set model.
Therefore, even though the treatment here seems restricted to wire-
less networks, it naturally extends to other communication models.

The network operates in discrete time, i.e., time is slotted and t ∈ N
denotes the time. Each node i ∈ V , capable of wireless transmission,
can transmit at the unit rate to any of its neighbors. We ignore the
power control for simplicity, but as an informed reader may notice, it
can be easily included in the model. At each node, packets (of unit size)
are arriving according to an external arrival process. Let Ā(t) = [Āi(t)]
denote the cumulative arrival process until time t ∈ N, i.e., Āi(t) is the
total number of packet that have arrived at node i in the time interval
[0, t]; Ā(0) = 0. Let Ai(t) = Āi(t) − Āi(t − 1) be the number of packets
arriving at node i in time slot t. We assume that at most one packet
can arrive at a node i in a time slot, i.e., Ai(t) ∈ {0,1}. We assume that
arrivals happen in the middle of the time-slot. Finally, we assume that
Ai(·) are Bernoulli i.i.d. random variable with Pr(Ai(t) = 1) = λi. Let
λ = [λi] ∈ Rn

+ denote the arrival rate vector.
For simplicity we assume that the network is single-hop,1 i.e., data

arriving at a node i will depart the network after its transmission. Let
Qi(t) denote the queue-size, or number of packets waiting, at node i at
the end of the time-slot t with Q(t) = [Qi(t)]. We assume the system
starts empty, i.e., Q(0) = 0. Let D̄(t) = [D̄i(t)] denotes the cumulative
departure process from Q(t); D(t) = D̄(t) − D̄(t − 1) = [Di(t)] denote
the number of departures in time slot t. We assume that departures
happen in the beginning of a time slot. Then,

Q(t) = Q(0) + Ā(t) − D̄(t)

= Ā(t) − D̄(t)

= Q(t − 1) + A(t) − D(t). (6.1)

1 The model ignores multi-hop situation. However, as explained in [67], the algorithm
presented can be easily extended for the case of multi-hop situation.

80 Network Scheduling

Now departures happen according to a scheduling algorithm which sat-
isfies the interference constraint that no two neighboring nodes are
transmitting data in the same time slot. To this end, let I denote the
set of all independent sets of G. Formally define

I ∆= {S ⊂ V : S = ∅ or, if i, j ∈ S then (i, j) /∈ E} .

And each time slot the scheduling algorithm schedules nodes of an
independent set I ∈ I to transmit packets. In what follows, we will
denote independent set I as vector I = [Ii] with Ii ∈ {0,1} and Ii = 1
indicates that node i is in I. Let I(t) ∈ I be the schedule chosen by
algorithm in the beginning of the time slot t. Then,

Q(t) = Q(t − 1) + A(t) − I(t)1{Q(t−1)>0}, (6.2)

where 1{Q(t−1)>0} is to make sure that if Ii(t) = 1 but Qi(t − 1) = 0
then there can be no departure.

6.1.1 Performance Metric and a Desirable Algorithm

We say that a network is stable for a given λ ∈ Rn
+ under a particular

scheduling algorithm if

lim sup
t→∞

E[Qi(t)] < ∞, ∀ i ∈ V.

Such an algorithm will be said to provide 100% throughput or be
throughput optimal.

From [67], it is clear that the set of all λ ∈ Rn
+ for which there exists

a scheduling policy so that the system stablity is given by Λ = Co(I),
where Co(I) is the convex hull of I in Rn

+. Hence, we call Co(I) the
throughput region of the system.

In the work by Tassiulas and Ephremides [67], it was shown that a
‘maximum weight independent set’ scheduling algorithm is stable for
all λ ∈ Co(I), where the schedule or independent set I(t) chosen at
time t is such that

I(t) ∈ argmax
I∈I

〈I,Q(t − 1)〉,

with the notation that 〈A,B〉 ∆=
∑

i∈V AiBi. A striking property of this
‘maximum weight’ algorithm is its ability to utilize network resources

6.2 Scheduling Algorithm 81

to the fullest without actually ‘learning’ or ‘knowing’ the arrival rates
or any other network parameters. In that sense, the maximum weight
algorithm is ‘universal’.

6.1.2 The Question

Now the maximum weight independent set algorithm is desirable in
terms of performance. However, it requires solving the maximum weight
independent set problem in the network graph every time. However,
finding a maximum weight independent set in general is NP-hard [25]
and even hard to approximate within n1−o(1) (B/2O(

√
logB) for a graph

with node degree B) factor [68]. This brings us to the following chal-
lenging question: is it even possible to have any throughput optimal,
polynomial (in n) time distributed algorithm?

6.2 Scheduling Algorithm

In what follows, we shall address the above mentioned question by
designing a Gossip algorithm for scheduling in the network. That is,
the algorithm by design is extremely simple and totally distributed.
Somewhat surprisingly, it turns out to be throughput optimal. The
algorithm we describe will be denoted by SCH. It is based on two
distributed sub-routines, SAMP and COMP, which we shall describe
before the description of SCH. It should be noted that COMP directly
utilizes the summation algorithm from Separable function
computation.

6.2.1 Random Sampler: SAMP

We describe a simple, distributed sampling algorithm SAMP to sample
an independent set from I. This algorithm may not sample independent
sets uniformly from I, but it samples each of them with strictly positive
probability.

SAMP

• Each node i ∈ V chooses Ii = 0 or 1 with probability 1/2
independently.

82 Network Scheduling

• If node i finds any j ∈ N (i) such that Ij = 1, it immediately
sets Ii = 0.

• Now, output I = [Ii] as a sampled independent set.

Now we state the main property of the sampling distribution induced
by algorithm SAMP.

Property 6.1. Algorithm SAMP samples independent sets of graph
G in distributed manner so that each independent set is sampled with
probability at least 2−n. Node i performs O(|N (i)|) operations, and the
algorithm in total performs O(|E| + n) ≤ O(n2) operations.

Proof. Since each node selects 0 or 1 independently with probability
1/2, each one of the 2n assignment of {0,1}n is equally likely (i.e., prob-
ability 2−n). Each independent set corresponds to one such assignment
in {0,1}n. As part of the algorithm, if random node assignment is by
itself an independent set, then it can be easily checked that the final
output is that particular independent set only. Thus, each indepen-
dent set has at least 2−n probability of being selected. It can be easily
checked that the output is always an independent set of G including ∅.

Now, the number of operations done by the algorithm are n ran-
dom coin tosses. Each node i ∈ V performs O(|N (i)|) comparisons.
Equivalently, there are at most O(|E|) operations for all nodes. These
are all extremely simple distributed operations. Now for any graph,
|E| = O(n2). Hence, the total number of operations is O(n2).

6.2.2 Comparator: COMP

The purpose of the algorithm COMP is to compute the summation
of node weights (approximately) for a given independent set. A useful
property of this algorithm is that all nodes obtain the same estimate,
and hence it allows for distributed decision in SCH.

Formally, given an independent set I = [Ii] and node weights W =
[Wi], we wish to estimate 〈I,W 〉. Equivalently, each node i ∈ V has a
number xi = IiWi and it wishes to estimate xsum =

∑
i xi. The weights

6.2 Scheduling Algorithm 83

correspond to the queue-size. Therefore, xi ∈ N. By requiring that
nodes with xi = 0 do not participate (but help in computation), we
will have that for all participating nodes xi ≥ 1. Thus, in effect we
have nodes with xi ≥ 1 and we wish to compute xsum =

∑
i xi. This

is precisely the question considered in Separable function computation
(SFC).

The summation algorithm designed in (SFC) computes an estimate,
ŵ(I) of 〈I,W 〉 in time O(δ−2n/Φ(P)) over graph G using Gossip infor-
mation exchange based on the probability matrix P (see Theorem 5.1,
with choice of ε = 3−n) with the following property:

Pr(ŵ(I) /∈ ((1 − δ)〈I,W 〉,(1 + δ)〈I,W 〉)) ≤ 3−n. (6.3)

We summarize this as the following formal property.

Property 6.2. The algorithm COMP with parameter δ > 0 produces
an estimate ŵ(I) of the weight of an independent set I, w(I) ∆= 〈I,W 〉
so that ŵ(I) ∈ ((1 − δ)w(I),(1 + δ)w(I)) with probability at least 1 −
3−n in time O(nδ−2/Φ(P)) over G based on probability matrix P .

6.2.3 Scheduling Algorithm SCH

Now, we describe the scheduling algorithm SCH. As described below,
it utilizes the distributed algorithms SAMP and COMP.

SCH

• The algorithm will use parameter δ > 0.
• Let I(t) be the independent set schedule chosen by the algo-

rithm at time t.
• At time t + 1, choose schedule I(t + 1) as follows:

— Generate a random independent set R(t + 1) using
SAMP.

— Obtain esimates ŵ(I(t)), ŵ(R(t + 1)) of weights
〈I(t),Q(t)〉 and 〈R(t + 1),Q(t)〉, respectively within
accuracy (1 ± δ/8) using COMP with parameter δ/8.

84 Network Scheduling

— If ŵ(R(t + 1)) > (1 + δ/8)/(1 − δ/8)ŵ(I(t)), then
set I(t + 1) = R(t + 1). Else, set I(t + 1) = I(t).

• Repeat the above algorithm every time.

Some remarks are in order. The algorithm SCH takes O(nδ−2/Φ(P))
time-steps or equivalently, a total of O(|E| + n2δ−1/Φ(P)) distributed
operations to compute a new schedule. In general, for any reasonable
graph, Φ(P) = Ω(1/n) and |E| ≤ n2. Therefore, SCH computes a new
schedule in O(n2δ−2) time-steps or total of O(n3δ−2) operations for
any network graph G.

The algorithm SCH can be further ‘slowed’ down by running it
once every T steps. For any finite T , including T = O(n3δ−2), the
resulting algorithm will remain stable. Thus, in effect it leads to
a stable algorithm that performs O(1) overall operations for hard
constraints like the independent set. It should be noted that this does
not come for free: there is an increase in the average queue-sizes upon
‘slowing down’ the algorithm.

6.3 Performance of Scheduling Algorithm

Here, we shall establish the stability or throughput optimality prop-
erty of SCH. We start with necessary technical preliminaries and then
present the formal theorem followed by its proof.

6.3.1 Technical Preliminaries

We present useful technical preliminaries here. Consider a discrete time
Markov chain on a countable state space S = NM for some finite integer
M . Let X(t) denote the random state of the Markov chain at time t ∈
N. Let X(0) = 0 (can be any arbitrary ‘good’ state). Let L: S → [0,∞)
and f : S → [0,∞) be any non-negative valued functions with L(0) = 0.
The following is a well-known result and can be found in the book by
Meyn and Tweedie [50].

Proposition 6.1. Let a Markov chain be aperiod and irreducible. Let
there exists a finite set C ⊂ S such that Markov chain satisfies the

6.3 Performance of Scheduling Algorithm 85

following condition: ∀ t ∈ N,

E[L(X(t + 1))|X(t)] ≤ L(X(t)) − f(X(t)) + B1{X(t)∈C},

with B > 0 a constant and supx∈C L(x) < ∞. Then,

(a) Markov chain is positive recurrent with a unique stationary
distribution π = [π(x)]x∈S such that

π(f) =
∑
x∈S

π(x)f(x) < ∞.

(b) Further,

lim
t→∞E[f(X(t)] → π(f).

Such results are popularly known as Foster–Lyapunov criteria for estab-
lishing positive recurrence of Markov chains.

6.3.2 Stability: Theorem and Proof

Here, we state the formal result establishing the throughput optimality
of SCH and its proof in detail.

Theorem 6.2. The algorithm SCH described above using parameter
δ > 0 is stable as long as λ ∈ (1 − δ)Co(I). Further,

lim
t→∞E[〈Q(t),1〉] = O(6n).

Proof. At time t, define Lyapunov function

L(t) = 〈Q(t),Q(t)〉 =
∑

i

Q2
i (t).

We will study the ‘average drift’ in L(·) at time slots tk = kT for large
enough T (will be 2.2n) so that for λ ∈ (1 − δ)Co(I)

E[L(tk+1)|Q(tk)] ≤ L(tk) − 0.4δ

n
〈Q(tk),1〉 + B, (6.4)

86 Network Scheduling

for some large enough (exponentially dependent on n) B. This will
immediately imply that

E[L(tk+1)|Q(tk)] ≤ L(tk) − φ〈Q(tk),1〉 + B1{Q(tk)∈C}, (6.5)

for some finite set C, constant B and φ > 0. By Proposition 6.1 and
the fact that the number of arrivals in a time interval of length T is at
most nT , we will obtain the desired conclusion that

lim sup
t→∞

E[〈Q(t),1〉] < ∞.

Next, we proceed towards proving (6.4). Given Q(tk) = Q(kT), we wish
to study the average drift, L(tk+1) − L(tk): let I(t) be the independent
set schedule chosen by SCH at time t. Define

∆i(t + 1) = Ai(t + 1) − Di(t + 1).

From the queueing dynamics in (6.1),

L(t + 1) − L(t) = 〈Q(t + 1),Q(t + 1)〉 − 〈Q(t),Q(t)〉
=
∑

i

(Qi(t + 1) − Qi(t))(Qi(t + 1) + Qi(t))

=
∑

i

∆i(t + 1)(2Qi(t) + ∆i(t + 1))

=
∑

i

∆2
i (t + 1) + 2Qi(t)∆i(t + 1). (6.6)

We will use the following facts: for all t, (1) Qi(t)Di(t + 1) =
Qi(t)Ii(t + 1), (2) ∆2

i (t + 1) ≤ 1. By telescopic summation of (6.6) for
t = tk, . . . , tk+1 − 1, we obtain

L(tk+1) − L(tk) ≤ nT + 2
tk+1−1∑
t=tk

〈Q(t),∆(t + 1)〉. (6.7)

Since the arrival process is Bernoulli i.i.d. with arrival rate vector λ,

E[L(tk+1) − L(tk) |Q(tk)]

≤ nT + 2
tk+1−1∑
t=tk

E[〈Q(t),λ − I(t + 1)〉|Q(tk)]. (6.8)

6.3 Performance of Scheduling Algorithm 87

We know that λ ∈ (1 − δ)Co(I), i.e.,

λ ≤
∑

j

αjIj , αj ≥ 0, Ij ∈ I,
∑

j

αj = 1 − δ.

Define

I∗(t) = argmax
I∈I

〈I,Q(t − 1)〉, W ∗(t) = 〈I∗(t),Q(t − 1)〉,

W (t) = 〈I(t),Q(t − 1)〉, ∆(t) = W ∗(t) − W (t).

Now, since at most n arrival and n departures can happen in a time-
slot, we have |W ∗(t + s) − W ∗(t)| ≤ 2ns for every t,s. Some rearrange-
ments, the above discussions and definitions yield the following:

E[L(tk+1) − L(tk) |Q(tk)]

≤ nT + 2
tk+1−1∑
t=tk

E[∆(t + 1) − δW ∗(t + 1)|Q(tk)]

≤ nT + 4nT 2 − δTW ∗(tk) + 2
tk+1−1∑
t=tk

E[∆(t)|Q(tk)]. (6.9)

Note that so far, the derivation has been independent of the algorithm.
Now, we bound the term

∑
t E[∆(t)|Q(tk)] using the property of SCH.

To this end, first some useful definitions and facts. Define

Z = inf
m≥1

{R(tk + m) = I∗(tk + m)},

Z1 = inf
m≥0

{Guarantee of (6.3) due to COMP does

not hold at tk + Z + m}.

By Property 6.1, we know that

E[min{Z,T}|Q(tk)] ≤ E[Z |Q(tk)] = E[Z] ≤ 2n.

Define T̂ = T − min{T,Z1}. By Property 6.2 of COMPand an appli-
cation of the union bound, we have Z1 ≤ T with probability at most
T3−n. Hence,

E[T̂ |Q(tk)] ≤ E[T̂] ≤ T 23−n.

88 Network Scheduling

Now, we are ready to bound
∑

t E[∆(t) |Q(tk)]: define

A = [tk + Z,tk + Z + Z1] ∩ [tk + 1, tk+1],

and B = [tk + 1, tk+1]\A. On the starting time of A, SAMP picks the
maximum weight independent set of that time, i.e., I∗(τk + Z). If Z1 >

0 (i.e., A �= ∅), then by the property of COMPand SCH, we will have
a schedule I(tk + Z) such that

W (tk + Z) ≥
(

1 − δ/8
1 + δ/8

)2

W ∗(tk + Z) ≈ (1 − δ/2)W ∗(tk + Z).

Now, for t > tk + Z and t ∈ A, by definition of Z1 and property of SCH,
we have that

W (t) ≥ W (t − 1) − n.

Putting the above discussion together with some re-arrangement and
some bounds discussed above give:∑

t∈A

E[∆(t)|Q(tk)] ≤ 2nT 2 +
δT

2
W ∗(tk). (6.10)

For t ∈ B, note that the length of B is upper bounded by
min{Z,T} + T̂ . Using the bounds as discussed above and the obvious
bound ∆(t) ≤ W ∗(t) we have∑

t∈B

E[∆(t)|Q(tk)] ≤ 2nT 2 + (2n + T 23−n)W ∗(tk). (6.11)

For T = 2.2n and n large enough, it is clear that

(2n + T 23−n) ≤ 0.1δT. (6.12)

Replacing (6.10)–(6.12) in (6.9), we have

E[L(tk+1) − L(tk)|Q(tk)] ≤ (nT + 8nT 2) − 0.4δW ∗(tk)

= −0.4δ

n
〈Q(tk),1〉 + O(5n), (6.13)

since T = 2.2n and W ∗(tk) ≥ 〈Q(tk),1〉/n for any graph G. Inequality
(6.13) is the same as (6.4), hence we have proved the desired property
to establish positive recurrence.

6.4 Relation to Other Models 89

Next, we prove the claim for the average queue-size, E[〈Q(t),1〉] as
t → ∞. Taking the expectation w.r.t. Q(tk) in (6.13),

E[L(tk+1) − L(tk)] ≤ −0.4δ

n
E[〈Q(tk),1〉] + O(5n). (6.14)

Telescopically, sum (6.14) for k = 0, . . . ,K − 1; using the fact that
L(·) ≥ 0 along with some re-arrangement yields

1
K

K−1∑
k=0

E[〈Q(tk),1〉] ≤ O

(
n5n

δ

)
.

Using the fact that for t ∈ (tk, tk+1], 〈Q(t),1〉 ≤ 〈Q(tk),1〉 + nT , taking
K → ∞, and using the above inequality gives us

lim sup
t→∞

1
t

t−1∑
s=0

E[〈Q(s),1〉] = O(6n). (6.15)

Given (6.13), the implication of Proposition 6.1(b) and (6.15), and the
relation between the cesaro limit and the limit of a sequence implies
that

lim
t→∞E[〈Q(t),1〉] = O(6n). (6.16)

This completes the proof of Theorem 6.2.

6.4 Relation to Other Models

The above described model ignores the multi-hop setup. However, we
have done so to keep the exposition simple. The scheduling algorithm
of interest with the independent set interference constraint remain the
same as maximum weight independent set but with weights being some-
what different. To explain this, we give example of two such well-known
scenarios as follows.

1. Multi-hop queuing network. This network was considered in [67].
For a given network G, let S be the set of data-flows with arrival rate
λs for flow s ∈ S. Let fs and ds denote source and destination node
respectively for flow s ∈ S. The routing is assumed to be pre-determined
in the network. If s passes through v ∈ V then let h(v,s) ∈ V denote

90 Network Scheduling

its next hop unless v = ds in which case its data departs from G. Let
Qvs(t) denote the queue-size of flow s at node v at time t. Define

Wvs(t) =
{

Qvs(t) − Qh(v,s)s(t), if v �= ds,

0, if v = ds.

Define Wv(t) = maxs∈S Wvs(t) and W (t) = [Wv(t)]. Then the through-
put optimal (stable) algorithm of [67] chooses I∗(t) as the schedule
which is a maximum weight independent set with respect to W (t − 1),
i.e.,

I∗(t) = argmax
I∈I

〈I,W (t − 1)〉.

2. Joint resource allocation & scheduling. In [40], it is very well-
explained that the problem of congestion control and scheduling decom-
poses into two weakly coupled sub-problems: (i) congestion control,
and (ii) scheduling. We describe the link-level scheduling problem. We
urge an interested reader to go through [40] for details. The setup of
the problem is the same as in the previous example with difference
that routing is not pre-determined. The coupling of congestion con-
trol and scheduling happens via Lagrange multipliers q(t) = [qe(t)]e∈E .
With the interference model of this paper, the scheduling problem
boils down to the selection of maximum weight independent set I∗(t)
with respect to weight W (t − 1) = [Wv(t − 1)], where Wv(t − 1) =
maxe:e=(u,v)∈E qe(t − 1).

6.5 Summary

Here, we presented a Gossip algorithm for multi-access scheduling in
a wireless network under the independent set interference constraint.
The algorithm presented builds upon the separable function computa-
tion algorithm and utilized a distributed sampler. Somewhat surpris-
ingly, this rather simple algorithm turns out to be throughput optimal.
The algorithm computes a new schedule in time that is inversely pro-
portional to 1/Φ(P), where Φ(P) is the conductance of the Gossip
probability matrix. Thus the algorithm’s computation time depends
on the underlying network graph structure through this dependence on
the reciprocal of Φ(P).

6.6 Historical Notes 91

Now some remarks are in order about the practicality of this algo-
rithm. In author’s opinion, the algorithm as stated is unlikely to be
useful for practice due to amount of the overhead involved in terms of
control information that is exchanged in the network for finding a new
schedule every time. However, the algorithm presented here provides
a proof-of-concept for existence of simple, distributed throughput opti-
mal algorithm. Better implementable gossip style throughput optimal
scheduling algorithm remain of interest for future research. We take
note of an exciting recent progress towards this goal by Rajagopalan
et al. [60].

6.6 Historical Notes

We present a brief summary of previous work on network scheduling
algorithms. The result by Tassiulas and Ephremides [67] established
that the ‘max-weight scheduling’ policy is throughput optimal for a
large class of scheduling problems. This result has been very influential
in the design of scheduling algorithms since then. Application to input-
queued switches led to an excellent development of theory and practice
of algorithms for scheduling under matching constraints: notably, the
results of [13, 27, 48, 49, 64, 65, 68]. A recent interest in wireless net-
works has led to proposal of distributed scheduling algorithms under
matching constraints [10, 11, 29, 41]. Most of these algorithms, based
on finding the maximal matching, guarantee only a constant fraction of
throughput. Recently, Modiano et al. [51] exhibited a throughput opti-
mal, extremely simple distributed scheduling algorithm with matching
constraints. This algorithm, as discussed in [40], easily extends to pro-
vide a throughput optimal algorithm for the resource allocation and
scheduling problem under matching constraints. The algorithm pre-
sented here is a natural generalization of [51] and was discussed in
work by Jung and Shah [33]. The application of this algorithm to the
joint scheduling and congestion control problem is described in a recent
work by Eryilmaz et al. [22].

7
Network Convex Optimization

The efficient utilization of network resources requires a good resource
allocation algorithm. Usually, such an algorithm is required to solve a
network-wide global optimization problem. Many of the important net-
work resource allocation problems can be viewed as convex optimiza-
tion (minimization) problems with linear constraints. In the context of
next generation networks, such as P2P or sensor networks, these need to
be implemented through Gossip mechanism. This motivates the study
of Gossip algorithms for global optimization problems without relying
on any form of network infrastructure.

In the classical literature, convex minimization problems with linear
constraints are known to be solvable through iterative algorithms by
means of the dual decomposition or primal–dual algorithms. However,
in most of the network resource allocation problems, these are not ‘truly
distributed’ or ‘local’ or in our terminology, Gossip algorithms. This is
because algorithms known in the classical literature are ‘distributed’
with respect to the “constraint graph” of the problem and not the
‘network graph’.

92

93

To explain this subtle but important difference, as before consider
a connected network of n nodes with network graph G = (V,E) with
V = {1, . . . ,n} and E representing edges along which communication is
feasible. Now suppose each node i ∈ V has a non-negative variable xi

associated with it. The goal is to assign values for the xi’s to optimize a
global network objective function under network resource constraints.
We assume that the global objective function f : Rn

+ → R is separable
in the sense that f(x) =

∑n
i=1 fi(xi) for any variable assignment x ∈

Rn
+. The feasible region is described by a set of nonnegative linear

constraints. Let us consider a specific example.

Example 7.1 (Network resource allocation). Given a connected
edge capacitated network G = (V,E), with each edge in E having non-
negative capacity, each user i ∈ V wishes to transfer data to a specific
destination along a particular path in the network, and has a utility
function that depends on the rate xi that the user is allocated. The
goal is to maximize the global network utility, which is the sum of the
utilities of individual users. The rate allocation x = (xi) must satisfy
capacity constraints, which are linear.

Now the constraint graph of the above optimization problem,
denoted by GC = (VC ,EC) where VC corresponds to variables and edges
in EC correspond to pairs of variables that participate in a common
constraint. For example, in the network resource allocation problem
above, the constraint graph GC contains an edge between two users if
and only if their paths intersect. Operationally, Gossip algorithm for
rate allocation must be local with respect to the network graph G. Note
that typically GC �⊆ G (i.e., EC �⊆ E), and hence a fully distributed
algorithm with respect to GC is not fully distributed with respect to
G; hence can satisfy ‘Gossip’ properties.

In summary, most of the classical algorithms from optimization the-
ory (see Historical notes for details and references therein) provide
distributed algorithms with respect to the constraint graph GC , and
not with respect to the underlying network graph G. Here, we shall
describe Gossip algorithm that is distributed with respect to G and

94 Network Convex Optimization

naturally builds on the summation algorithm described in Separable
function computation.

7.1 Setup

Here, we consider the problem of minimizing a convex separable func-
tion over linear inequalities. As noted earlier, let G = (V,E) be the
connected network graph with V = {1, . . . ,n}. Each node i ∈ V has
non-negative decision variable xi ∈ R+.

We consider convex minimization problems of the following
general form.

minimize f(x) ∆=
n∑

i=1

fi(xi) (P)

subject to Ax = b

x ∈ Rn
+.

Here, we assume that the objective function is separable, i.e., f(x) =∑n
i=1 fi(xi), and each fi: R+ → R is twice differentiable and strictly

convex, with limxi↓0 f ′
i(xi) < ∞ and limxi↑∞ f ′

i(xi) = ∞. We will call
this optimization problem as the primal problem (P).

The constraints are linear equality constraints of the form Ax =
b with matrix A ∈ Rm×n

+ and a vector b ∈ Rm
++, and non-negativity

constraints xi ≥ 0 on the variables. We assume that m ≤ n, and that
the matrix A has linearly independent rows. For i = 1, . . . ,n, let ai =
[A1i · · ·Ami]T denote the ith column of the matrix A. In this distributed
setting, we assume that node i is given the vectors b and ai, but not
the other columns of the matrix A.

The goal is to design a Gossip algorithm that produces an ε-
approximately feasible solution with objective function value close to
that of an optimal feasible solution for a given error parameter ε > 0.
We would like the running time of the algorithm to be polynomial
in 1/ε, the number of constraints m, the inverse of the conductance,
Φ(P) of the Gossip based information exchange probability matrix P

graph. Also we shall allow reasonable dependence of running time on
the property of the objective function.

7.2 Algorithm: Description and Performance Analysis 95

7.2 Algorithm: Description and Performance Analysis

We describe a Gossip algorithm for solving the optimization problem
with the above stated desired properties. The algorithm is based on
the Lagrange dual problem. Due to the separable objective function,
its dual problem can be decomposed so that an individual node can
recover the value of its variable in a primal solution from a dual
feasible solution. The dual problem is solved via a dual ascent algo-
rithm. The standard approach for designing such an algorithm only
leads to a distributed algorithm with respect to the constraint graph
of the problem. To design a Gossip algorithm there are two main chal-
lenges: (a) making the algorithm distributed with respect to the net-
work graph G, and (b) respecting the non-negativity constraints on the
variables.

The first challenge is resolved by utilizing the Gossip summation
algorithm from Separable function computation as a subroutine. In a
sense, the summation algorithm provides ‘a distributed layer’ for solv-
ing the optimization problem. The second challenge is resolved by use of
a barrier function that is inspired by (centralized) interior-point math-
ematical programming algorithms.

In what follows, we start with some necessary notations and pre-
liminaries. Then, we shall describe the algorithm and its properties.
Finally, we shall provide proof of its properties in detail.

7.2.1 Notations and Preliminaries

For a vector x ∈ Rn, by ‖x‖ we denote the �2-norm of the vector. The
ball of radius r around x is defined as B(x, r) = {y : ‖y − x‖ ≤ r}.
For a real matrix M , we write σmin(M) and σmax(M) to denote
the smallest and largest singular values, respectively, of M , so that
σmin(M)2 and σmax(M)2 are the smallest and largest eigenvalues of
MT M . Note that σmin(M) = min{‖Mz‖ | ‖z‖ = 1} and σmax(M) =
max{‖Mz‖ | ‖z‖ = 1}. If M is symmetric, then the singular values and
the eigenvalues of M coincide, so σmin(M) and σmax(M) are the small-
est and largest eigenvalues of M .

Associated with the primal problem (P) is the Lagrangian function
L(x,λ,ν) = f(x) + λT (Ax − b) − νTx, which is defined for λ ∈ Rm

96 Network Convex Optimization

and ν ∈ Rn, and the Lagrange dual function

g(λ,ν) = inf
x∈Rn

+

L(x,λ,ν) = −bT λ +
n∑

i=1

inf
xi∈R+

(
fi(xi) +

(
aT

i λ − νi

)
xi

)
.

The following problem is the Lagrange dual problem to (P).

maximize g(λ,ν) (D)

subject to νi ≥ 0, i = 1, . . . ,n

Although, we seek a solution to the primal problem (P), to avoid
directly enforcing the non-negativity constraints, we introduce a loga-
rithmic barrier. For a parameter θ > 0, we consider the following primal
barrier problem.

minimize f(x) − θ

n∑
i=1

lnxi (Pθ)

subject to Ax = b

The Lagrange dual function corresponding to (Pθ) is

gθ(λ) = −bT λ +
n∑

i=1

inf
xi∈R++

(
fi(xi) − θ lnxi + aT

i λxi

)
,

and the associated Lagrange dual problem is the following uncon-
strained optimization problem.

maximize gθ(λ) (Dθ)

over λ ∈ Rm.

We assume that the primal barrier problem (Pθ) is feasible; that is,
there exists a vector x ∈ Rn

+ such that Ax = b. Under this assumption,
the optimal value of (Pθ) is finite, and Slater’s condition implies that
the dual problem (Dθ) has the same optimal value, and there exists
a dual solution λ∗ that achieves this optimal value [9]. Furthermore,
because (Dθ) is an unconstrained maximization problem with a strictly
concave objective function, the optimal solution λ∗ is unique.

7.2 Algorithm: Description and Performance Analysis 97

7.2.1.1 Some useful properties

For a vector of dual variables λ ∈ Rm, let x(λ) ∈ Rn
++ denote the

corresponding primal minimizer in the the Lagrange dual function:
for i = 1, . . . ,n,

xi(λ) = arg inf
xi∈R++

(
fi(xi) − θ lnxi + aT

i λxi

)
. (7.1)

For this primal x(λ) based on dual λ, we denote the ‘violation of equal-
ity’ ‖Ax(λ) − b‖, as p(λ). Now, we can solve for each xi(λ) explicitly.
As fi(xi) − θ lnxi + aT

i λxi is convex in xi,

f ′
i(xi(λ)) − θ

xi(λ)
+ aT

i λ = 0. (7.2)

Define hi: R++ → R by hi(xi) = f ′
i(xi) − θ/xi; since fi is convex, hi is

strictly increasing and hence has a well-defined and strictly increasing
inverse. We then have

xi(λ) = h−1
i

(−aT
i λ
)
.

Also, we assume that, given a vector λ, a node i can compute xi(λ).
This is reasonable since computing xi(λ) is simply an unconstrained
convex optimization problem in a single variable (7.1), which can be
done by several methods, such as Newton’s method.

Next, in our convergence analysis, we will argue about the gradient
of the Lagrange dual function gθ. A calculation shows that

∇gθ(λ) = −b +
n∑

i=1

aixi(λ) = Ax(λ) − b. (7.3)

We will use p(λ) to denote ‖∇gθ(λ)‖ = ‖Ax(λ) − b‖ for a vector
λ ∈ Rm. We note that at the optimal dual solution λ∗, we have
p(λ∗) = 0 and Ax(λ∗) = b.

To control the rate of decrease in the gradient norm p(λ), we must
understand the Hessian of gθ. For j1, j2 ∈ {1, . . . ,m}, component (j1, j2)
of the Hessian ∇2gθ(λ) of gθ at a point λ is

∂gθ(λ)
∂λj1∂λj2

=
n∑

i=1

Aj1i
∂xi(λ)
∂λj2

= −
n∑

i=1

Aj1iAj2i

(
h−1

i

)′ (−aT
i λ
)
. (7.4)

98 Network Convex Optimization

As the functions h−1
i are strictly increasing,

min
�=1,...,n

((
h−1

�

)′ (−aT
� λ
))

> 0.

Hence, for any µ ∈ Rm,

µT ∇2gθ(λ)µ =
m∑

j1=1

µj1

m∑
j2=1

∂gθ(λ)
∂λj1∂λj2

µj2

= −
m∑

j1=1

µj1

m∑
j2=1

n∑
i=1

Aj1iAj2i

(
h−1

i

)′ (−aT
i λ
)
µj2

= −
n∑

i=1

(
h−1

i

)′ (−aT
i λ
) m∑

j1=1

Aj1iµj1

m∑
j2=1

Aj2iµj2

= −
n∑

i=1

(
h−1

i

)′ (−aT
i λ
)(

aT
i µ
)2

≤ − min
�=1,...,n

((
h−1

�

)′ (−aT
� λ
))(

AT µ
)T (

AT µ
)

< 0, (7.5)

and gθ is a strictly a concave function.

7.2.2 Description of Algorithm

7.2.2.1 Basic algorithm

We consider an iterative algorithm for obtaining an approximate solu-
tion to (P), which uses gradient ascent for the dual barrier problem
(Dθ). The algorithm generates a sequence of feasible solutions λ0, λ1,
λ2, . . . for (Dθ), where λ0 is the initial vector. To update λk−1 to λk in
an iteration k, the algorithm uses the gradient ∇gθ

(
λk−1

)
to determine

the direction of the difference λk − λk−1. We assume that the algorithm
is given as inputs to the initial point λ0, and an accuracy parameter ε,
such that ε ∈ (0,1). The goal of the algorithm is to find a point x ∈ Rn

+
that is nearly feasible in the sense that ‖Ax − b‖ ≤ ε‖b‖, and that has
objective function value close to that of an optimal feasible point.

In this section, we describe the operation of the algorithm under
the assumption that the algorithm has knowledge of certain parameters
that affect its execution and performance. We refer to an execution of

7.2 Algorithm: Description and Performance Analysis 99

the algorithm with a particular set of parameters as an inner run of
the algorithm. To address the fact that these parameters would not be
available to the algorithm at the outset, we add an outer loop to the
algorithm. The outer loop uses binary search to find appropriate values
for the parameters, and performs an inner run for each set of parameters
encountered during the search. Section 7.2.2.3 discusses the operation
of the outer loop of the algorithm. The choice of these parameters is
inspired by convergence analysis of the algorithm and that is the reason
for defering the discussion of setting parameters later.

An inner run of the algorithm consists of a sequence of itera-
tions. Iteration k, for k = 1,2, . . . , begins with a current vector of
dual variables λk−1, from which each node i computes xi

(
λk−1

)
. Let

sk−1 = Ax
(
λk−1

)
, so that by (7.3) ∇gθ

(
λk−1

)
= sk−1 − b.

In order for the algorithm to perform gradient ascent, each node
must compute the vector sk−1. A component sk−1

j =
∑n

i=1 Ajixi

(
λk−1

)
of sk−1 is the sum of the values yi = Ajixi

(
λk−1

)
for those nodes i such

that Aji > 0. This is where we need ‘distributed layer’ provided by the
summation algorithm described in Separable function computation.

Specifically, nodes apply this summation Gossip algorithm
(m times, one for each component) to compute a vector ŝk−1, where
ŝk−1
j is an estimate of sk−1

j for j = 1, . . . ,m. Recall that the summation
algorithm takes as input parameters an accuracy ε1 and an error
probability δ. They provide estimate ŝk−1

j of sk−1
j for a particular

value of j so that

(1 − ε1)sk−1
j ≤ ŝk−1

j ≤ (1 + ε1)sk−1
j (7.6)

with probability at least 1 − δ. This computation takes O(ε−2
1 logδ−2/

Φ(P)) time for δ ≤ 1/n (which will be the case here). Recall that P

denotes the information exchange probability matrix utilized by the
Gossip algorithm.

In the analysis of an inner run, we assume that each invocation of
the summation routine succeeds, so that (7.6) is satisfied. Provided we
choose δ sufficiently small (see Section 7.2.2.3), this assumption will
hold with high probability.

A description of an iteration k of an inner run of the algorithm
is shown in Figure 7.1. The values for the step size t and the error

100 Network Convex Optimization

Inner run: Iteration k

1. For j = 1, . . . ,m, the nodes compute an estimate ŝk−1
j of sk−1

j =
∑n

i=1 Ajixi

(
λk−1)

.
2. The nodes check the following two stopping conditions.

(1 − ε1)
(

1 − 2
3

ε

)
‖b‖ ≤

∥∥∥ŝk−1
∥∥∥ ≤ (1 + ε1)

(
1 +

2
3

ε

)
‖b‖. (7.7)

∥∥∥ŝk−1 − b
∥∥∥ ≤

(
2
3

ε + ε1

(
1 + ε1

1 − ε1

)(
1 +

2
3

ε

))
‖b‖. (7.8)

If both conditions (7.7) and (7.8) are satisfied, the inner run terminates, producing
as output the vector x

(
λk−1)

.
3. The nodes update the dual vector by setting ∆λk−1 = ŝk−1 − b, and λk = λk−1 +

t∆λk−1.

Fig. 7.1 The kth iteration of an inner run.

tolerance ε1 will follow next. An inner run is essentially standard
gradient ascent, where the stopping criterion (sufficiently small gradi-
ent norm) is modified to reflect the potential error in nodes’ estimates
of the gradient.

7.2.2.2 Choosing the parameters

The step size t and the convergence rate of our algorithm are governed
by the variation in curvature of the Lagrange dual function. Intuitively,
regions of large curvature necessitate a small step size to guarantee
convergence, and if small steps are taken in regions with small curva-
ture, then progress toward an optimal solution is slow. Examining the
Hessian of the Lagrange dual function (7.4), we see that curvature vari-
ation depends both on variation in (h−1

i)′, which roughly corresponds
to variation in the curvature of the fi’s, and on the variation in the
singular values of AT . Precisely, note that(
h−1

i

)′ (−aT
i λ
)

=
1

h′
i

(
h−1

i

(−aT
i λ
)) =

1
f ′′

i

(
h−1

i

(−aT
i λ
))

+ θ

(h−1
i (−aT

i λ))2

,

and, for a distance r > 0, define

q(r) = min
�=1,...,n

min
λ∈B(λ∗,r)

(
h−1

i

)′ (−aT
i λ
)

Q(r) = max
�=1,...,n

max
λ∈B(λ∗,r)

(
h−1

i

)′ (−aT
i λ
)

7.2 Algorithm: Description and Performance Analysis 101

Our step size and convergence rate will depend on a parameter
R ≥ 1, defined as

R =
Q
(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2

q (‖λ0 − λ∗‖)σmin (AT)2
.

The parameter R measures the maximum curvature variation of the
Lagrange dual function only in a ball of radius

∥∥λ0 − λ∗∥∥ around the
optimal dual solution λ∗; this is because the sequence of dual solutions
generated by our algorithm grows monotonically closer to λ∗, and we
are concerned only with variation in the region in which our algorithm
executes (as opposed to the entire feasible region, which is all of Rm).
Thus a better initial estimate of the optimal dual solution yields a
tighter bound on curvature variation and a better convergence result.

In the convergence analysis that will follow the algorithm descrip-
tion, first we shall assume that the inner run knows values of numera-
tor and denominator of R. Later in the analysis, justification for this
assumption will be provided by means of a binary search based algo-
rithm that will estimate it.

Now, define α = 1/6R. For the summation subroutine, nodes use
the accuracy parameter ε1 = εα/3, where ε is the error tolerance given
to the distributed algorithm. For gradient ascent, nodes compute and
employ the following step size:

t =

(
1 − α

(1
2 + ε

3

))2 − 1
6

(1
2 + ε

3

)(
1 + α

(1
2 + ε

3

))
R
(
1 + α

(1
2 + ε

3

))2(
Q(‖λ0 − λ∗‖)σmax (AT)2

) . (7.9)

Here, t > 0 since α ≤ 1/6 and ε ≤ 1. An inner run continues to execute
iterations for increasing values of k until both stopping conditions are
satisfied, or the outer loop of the algorithm terminates the inner run
as described in Section 7.2.2.3.

7.2.2.3 Outer loop and stopping conditions

Here, we primarily describe the outer loop of the algorithm that leads
to determination of parameters used by the inner loop. The termination
or stopping conditions for the algorithm will be described as well.

102 Network Convex Optimization

First, we describe the outer loop of the algorithm. The purpose of
the outer loop is to invoke inner runs with various parameter values,
and to terminate runs if they do not end in the allotted number of
iterations.

As the outer loop does not know the values q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2

and Q
(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2, it uses binary search to choose the

parameter values for the inner runs. The algorithm (and its analysis)
remains valid if we replace the former product with a lower bound on
it, and the latter product with an upper bound on it. Let U > 0 be an
upper bound on the ratio between the largest and the smallest possible
values of these two products.

The outer loop enumerates logU possible values q1, q2, . . . , qlog U for
q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2, with q�+1 = 2q� for each �. Similarly, it con-

siders values Q1,Q2, . . . ,Qlog U for Q
(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2. For each

pair of values (q�1 ,Q�2) such that q�1 ≤ Q�2 , it computes an upper bound
T (q�1 ,Q�2) on the number of iterations required for an inner run with
these parameter values. As stated later in Theorem 7.8, this value is
bounded above as

T (q�1 ,Q�2) = O

(
Q2

�2

q2
�1

log
(

p(λ0)
ε‖b‖

))
.

Recall that p(λ) = ‖Ax(λ) − b‖.
Now, the outer loop sorts the T (q�1 ,Q�2) values, and executes inner

runs according to this sorted order. When an inner run is executed with
parameter values (q�1 ,Q�2), the outer loop lets it execute for T (q�1 ,Q�2)
iterations. If it terminates due to the stopping conditions being satisfied
within this number of iterations, then by Theorem 7.8 the solution x(λ)
produced will satisfy

‖Ax(λ) − b‖ ≤ ε‖b‖,

and so the outer loop outputs this solution. On the other hand, if the
stopping conditions for the inner run are not satisfied within the allot-
ted number of iterations, the outer loop terminates the inner run, and
then executes the next inner run with new parameter values according
to the order induced by T (q�1 ,Q�2).

7.2 Algorithm: Description and Performance Analysis 103

By the choice of q�1 and Q�2 , there exist q�∗
1

and Q�∗
2

such

that q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2

/2 ≤ q�∗
1

≤ q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2 and

Q
(∥∥λ0− λ∗∥∥)σmax

(
AT
)2 ≤ Q�∗

2
≤ 2Q

(∥∥λ0 − λ∗∥∥)σmax
(
AT
)2. For the

parameter pair (q�∗
1
,Q�∗

2
), T (q�∗

1
,Q�∗

2
) is, up to constant factors, the

bound in Theorem 7.8. As we shall see, the bound established
in Theorem 7.8 in the future section, will imply that for given
value of R, the inner loop algorithm must terminate within itera-
tions O(R2 log(p(λ0)/ε‖b‖)). Therefore, when the outer loop reaches
the pair (q�∗

1
,Q�∗

2
), the corresponding inner run will terminate with

the stopping conditions satisfied in the number of iterations spec-
ified in Theorem 7.8. Since the inner runs executed prior to this
one will also be terminated in at most this number of iterations,
and there are at most log2 U such runs, we obtain the following
upper bound on the total number of iterations executed by the
algorithm.

Lemma 7.1. The total number of iterations executed in all the inner
runs initiated by the outer loop is

O

(
R2 log

(
p
(
λ0
)

ε‖b‖

)
log2 U

)
.

Now, we describe the only remaining aspect of the termination con-
dition. Recall that in an iteration k of an inner run, the nodes must
compute an estimate ŝk−1

j for each of the m components of the vec-
tor sk−1

j . As such, the summation routine must be invoked m times
in each iteration. Recall that the algorithm should terminate after
O(ε−2

1 log2 δ−1/Φ(P)) iterations. Therefore, if nodes have estimate of
upper bound on n (number of nodes) and lower bound on Φ(P) then
they can determine when to stop. It should be noted that a trivial lower
bound of 1/n on Φ(P) can be utilized for any reasonable graph; and
hence only an upper bound on n is necessary information for determin-
ing stopping condition.

104 Network Convex Optimization

7.2.3 Performance: Convergence and Correctness

Here, we describe the correctness and convergence properties of the
algorithm described above. To this end, we need to set the value of
δ utilized in the summation algorithm for the failure probability. The
Lemma 7.1 and union bound suggests that in order for all the sum-
mation computation to satisfy condition (7.6) with probability at least
1 − 1/n2, it is sufficient to set

δ ≤
(

n2mR2 log

(
p
(
λ0
)

ε‖b‖

)
log2 U

)−1

.

We will also set ε1 = εα/3. This along with the above choice of δ leads
to the following bound on each summation subroutine:

O

 R2

ε2Φ(P)

(
log

(
nmR log

(
p
(
λ0
)

ε‖b‖

)
log U

))2
 ∆= O∗

(
R2

ε2Φ(P)

)
,

where we have ignored poly-logarithmic terms in the O∗(·) notation
to highlight the key dependence of the running time. Here, note that
the total number of operations performed by the algorithm is m times
larger than the above stated bound since there are m summations we
need to perform for each iteration of the inner run. Thus resulting
algorithm (with all choices of parameters and stopping condition) has
the following convergence and correctness property.

Theorem 7.2(Main Theorem). The algorithm produces a solution
x(λ) that satisfies the following properties with high probability (i.e.,
probability ≥ 1 − 1/n2) in time O∗(mε−2R2/Φ(P)):

(a) ‖Ax(λ) − b‖ ≤ ε‖b‖,
(b) f(x(λ)) ≤ OPT + ε‖b‖‖λ‖ + nθ,

where OPT is the cost of optimal assignment of the primal optimization
problem (P) and ‖λ‖ ≤ ‖λ0‖ + 2‖λ∗ − λ0‖.

7.2 Algorithm: Description and Performance Analysis 105

7.2.4 Analysis of Algorithm

In this section, we shall establish the proof of Theorem 7.2. In order
to establish the proof, we will state a sequence of results (in terms of
Lemmas and a Theorem) whose proofs are defered to the next section.
Using these results, we will conclude the proof.

To this end, first we wish to establish bound on the number of
iterations required by the algorithm used for inner run to obtain a
solution x

(
λk
)

such that
∥∥Ax

(
λk
) − b

∥∥ ≤ ε‖b‖, and we also prove
an approximation bound on the objective function value of the final
solution. We assume in this analysis that the summation subroutine
used by an inner run is always successful; that is, (7.6) holds for every
sum computation. Furthermore, we assume that an inner run executes
until both stopping conditions are satisfied.

The possibility of an inner run being terminated by the outer loop
was addressed in Section 7.2.2.3. As explained there, in what follows
we will establish bound on number of iterations taken by inner loop
for given value of R in Theorem 7.8. And hence for a correct pair of
values q�1 ,Q�2 such that R/4 ≤ Q�2/q�1 ≤ 4R, the outer loop will not
terminate the inner loop before both stopping conditions are satisfied.
Therefore, in the analysis that follows to establish the validity of this
claim we can safely ignore the possibility of outer loop terminating
inner loop. We shall also assume that the value of R is known in the
analysis to follow.

To this end, first we consider the extent to which ∆λk−1 deviates
from the correct gradient ∇gθ

(
λk−1

)
, provided that the inner run does

not terminate in iteration k. To this end, let uk−1 = ŝk−1 − sk−1 be
a vector representing the error in the computation of sk−1. Note that
∆λk−1 = ∇gθ

(
λk−1

)
+ uk−1.

Lemma 7.3. If the stopping conditions (7.7) and (7.8) are not both
satisfied in iteration k, then

∥∥uk−1∥∥ ≤ α

(
1
2

+
ε

3

)∥∥∥∇gθ

(
λk−1

)∥∥∥ (7.10)

106 Network Convex Optimization

and (
1 − α

(
1
2

+
ε

3

))∥∥∥∇gθ

(
λk−1

)∥∥∥
≤
∥∥∥∆λk−1

∥∥∥ ≤
(

1 + α

(
1
2

+
ε

3

))∥∥∥∇gθ

(
λk−1

)∥∥∥ . (7.11)

Next, we develop some inequalities that will be useful in under-
standing the evolution of an inner run from one iteration to the next.

Lemma 7.4. For any two points ρ1,ρ2 ∈ B
(
λ∗,
∥∥λ0 − λ∗∥∥),∥∥Ax

(
ρ2) − Ax

(
ρ1)∥∥ ≤ Q

(∥∥λ0 − λ∗∥∥)σmax
(
AT
)2∥∥ρ2 − ρ1∥∥ (7.12)

and (∇gθ

(
ρ2) − ∇gθ

(
ρ1))T (ρ2 − ρ1)

≤ −q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2∥∥ρ2 − ρ1∥∥2

. (7.13)

Corollary 7.5. For any λ ∈ B
(
λ∗,
∥∥λ0 − λ∗∥∥),

‖∇gθ(λ)‖ ≤ Q
(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2 ‖λ − λ∗‖ ,

and

∇gθ(λ)T (λ − λ∗) ≤ −q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2 ‖λ − λ∗‖2 .

We now show that all the dual vectors generated by an inner run
are as close to the optimal solution λ∗ as the initial point λ0.

Lemma 7.6. For each iteration k executed by an inner run, λk−1 ∈
B
(
λ∗,
∥∥λ0 − λ∗∥∥).

To establish that an inner run makes progress as it executes iter-
ations, we show that the norm of the gradient of gθ

(
λk
)
, p
(
λk
)

=∥∥Ax
(
λk
) − b

∥∥, decreases by a multiplicative factor in each iteration.

7.2 Algorithm: Description and Performance Analysis 107

Lemma 7.7. For each iteration k executed by an inner run in which
the stopping conditions are not satisfied,∥∥∥∇gθ

(
λk
)∥∥∥ ≤

(√
1 − 1

4R2

)∥∥∥∇gθ

(
λk−1

)∥∥∥ .

Lemma 7.7 implies an upper bound on the number of iterations
executed by an inner run.

Theorem 7.8. An inner run terminates after

O

(
R2 log

(
p
(
λ0
)

ε‖b‖

))
iterations with a solution x(λ) such that ‖Ax(λ) − b‖ ≤ ε‖b‖.

Finally, we bound the difference between the objective function
value of the solution produced by an inner run and the optimal value
of the primal problem. Let OPT denote the optimal value of (P).

Corollary 7.9. The objective function value of the solution x(λ) pro-
duced by an inner run satisfies

f(x(λ)) ≤ OPT + ε‖b‖‖λ‖ + nθ.

Since the dual solution λ produced by the algorithm satisfies ‖λ‖ ≤
‖λ0‖ + 2‖λ0 − λ∗‖, by choosing the parameters ε and θ appropriately,
the approximation error can be made as small as desired (though,
of course, the convergence time increases as each of these parameters
decreases).

Proof. [Theorem 7.2] In order to prove the claims of the Theorem, in
light of Theorem 7.8 and Corollary 7.9, it is sufficient to establish that
our algorithm indeed executes the inner loop with the a good estimate

108 Network Convex Optimization

of R upto O∗(R2) iterations with high probability. As explained in
Section 7.2.2.3, the appropriate choice of δ along with binary search
over proper set of log2 U , q�1 ,Q�2 pairs the algorithm will indeed have
this property. Therefore, the output of the algorithm is indeed satisfying
(a) and (b) properties with high probability. The bound on computation
time follows from the accounting performed in Section 7.2.3 along with
Lemma 7.1. This completes the proof of Theorem 7.2.

7.2.4.1 Remaining proofs

Here, we present the remaining proofs of the results stated above to
establish Theorem 7.2.

Proof of Lemma 7.3: If (7.7) is not satisfied, then∥∥∥ŝk−1
∥∥∥ < (1 − ε1)

(
1 − 2

3
ε

)
‖b‖ or

∥∥∥ŝk−1
∥∥∥ > (1 + ε1)

(
1 +

2
3
ε

)
‖b‖,

and so, by (7.6),∥∥∥sk−1
∥∥∥ <

(
1 − 2

3
ε

)
‖b‖ or

∥∥∥sk−1
∥∥∥ >

(
1 +

2
3
ε

)
‖b‖.

By the triangle inequality, this implies that∥∥∥∇gθ

(
λk−1

)∥∥∥ =
∥∥∥sk−1 − b

∥∥∥ ≥
∣∣∣∥∥∥sk−1

∥∥∥ − ‖b‖
∣∣∣ > 2

3
ε‖b‖. (7.14)

Suppose that (7.7) is satisfied and (7.8) is not satisfied. Note that
(7.6) implies that

∥∥uk−1
∥∥ ≤ ε1

∥∥sk−1
∥∥, and so (7.7) and (7.6) yield∥∥∥uk−1

∥∥∥ ≤ ε1

∥∥∥sk−1
∥∥∥ ≤ ε1

(
1 + ε1

1 − ε1

)(
1 +

2
3
ε

)
‖b‖. (7.15)

By the triangle inequality and (7.15),∥∥∥∆λk−1
∥∥∥ =

∥∥∥ŝk−1 − b
∥∥∥ =

∥∥∥∇gθ

(
λk−1

)
+ uk−1

∥∥∥
≤
∥∥∥∇gθ

(
λk−1

)∥∥∥ +
∥∥∥uk−1

∥∥∥
≤
∥∥∥∇gθ

(
λk−1

)∥∥∥ + ε1

(
1 + ε1

1 − ε1

)(
1 +

2
3
ε

)
‖b‖,

7.2 Algorithm: Description and Performance Analysis 109

and so the fact that (7.8) is not satisfied implies that∥∥∥∇gθ

(
λk−1

)∥∥∥ ≥
∥∥∥ŝk−1 − b

∥∥∥ − ε1

(
1 + ε1

1 − ε1

)(
1 +

2
3
ε

)
‖b‖

>

(
2
3
ε + ε1

(
1 + ε1

1 − ε1

)(
1 +

2
3
ε

))
‖b‖

− ε1

(
1 + ε1

1 − ε1

)(
1 +

2
3
ε

)
‖b‖

=
2
3
ε‖b‖. (7.16)

Combining (7.14) and (7.16), it follows that if the two stopping condi-
tions are not both satisfied, then∥∥∥∇gθ

(
λk−1

)∥∥∥ >
2
3
ε‖b‖.

Now, applying the triangle inequality yields∥∥∥uk−1
∥∥∥ ≤ ε1

∥∥∥sk−1
∥∥∥

≤ ε1

(∥∥∥∇gθ

(
λk−1

)∥∥∥ + ‖b‖
)

≤ ε1

(
1 +

3
2ε

)∥∥∥∇gθ

(
λk−1

)∥∥∥
= α

(
1
2

+
ε

3

)∥∥∥∇gθ

(
λk−1

)∥∥∥ ,

where the last equality follows from the fact that ε1 = εα/3. This proves
inequality in (7.10), and the inequalities in (7.11) follow from (7.10) and
the triangle inequality.

Proof of Lemma 7.4: Let
[
ρ1,ρ2

]
denote the line segment joining ρ1

and ρ2. Since B
(
λ∗,
∥∥λ0 − λ∗∥∥) is a convex set, for any i = 1, . . . ,n and

any λ ∈ [ρ1,ρ2
]
,
(
h−1

i

)′ (−aT
i λ
) ≤ Q

(∥∥λ0 − λ∗∥∥). As a result,∣∣xi

(
ρ2) − xi

(
ρ1)∣∣ = ∣∣h−1

i

(−aT
i ρ2) − h−1

i

(−aT
i ρ1)∣∣

≤ Q
(∥∥λ0 − λ∗∥∥)∣∣aT

i

(
ρ2 − ρ1)∣∣

= Q
(∥∥λ0 − λ∗∥∥)aT

i ρ,

110 Network Convex Optimization

where ρ ∈ Rm is defined by ρj = |ρ2
j − ρ1

j | for j = 1, . . . ,m. This implies
that ∥∥Ax

(
ρ2) − Ax

(
ρ1)∥∥ =

∥∥A(x(ρ2) − x
(
ρ1))∥∥

≤ Q
(∥∥λ0 − λ∗∥∥)∥∥AAT ρ

∥∥
≤ Q

(∥∥λ0 − λ∗∥∥)σmax
(
AAT

)‖ρ‖
= Q

(∥∥λ0 − λ∗∥∥)σmax
(
AT
)2∥∥ρ2 − ρ1∥∥ ,

and the inequality in (7.12) is proved.
For any λ ∈ [ρ1,ρ2

]
and any µ ∈ Rm, a calculation analogous to the

one in (7.5) yields

µT ∇2gθ(λ)µ = −
m∑

j1=1

µj1

m∑
j2=1

n∑
i=1

Aj1iAj2i

(
h−1

i

)′ (−aT
i λ
)
µj2

≤ −q
(∥∥λ0 − λ∗∥∥)µT AAT µ

≤ −q
(∥∥λ0 − λ∗∥∥)σmin

(
AAT

)‖µ‖
= −q

(∥∥λ0 − λ∗∥∥)σmin
(
AT
)2 ‖µ‖ (7.17)

From the second-order expansion of the function gθ, there exist vectors
µ1,µ2 ∈ [ρ1,ρ2

]
such that

gθ

(
ρ2) = gθ

(
ρ1) + ∇gθ

(
ρ1)T (ρ2 − ρ1)

+
1
2
(
ρ2 − ρ1)T ∇2gθ

(
µ1)(ρ2 − ρ1)

gθ

(
ρ1) = gθ

(
ρ2) + ∇gθ

(
ρ2)T (ρ1 − ρ2)

+
1
2
(
ρ1 − ρ2)T ∇2gθ

(
µ2)(ρ1 − ρ2)

Adding the two equations and applying (7.17) yields(∇gθ

(
ρ2) − ∇gθ

(
ρ1))T (ρ2 − ρ1)

=
1
2
(
ρ2 − ρ1)T ∇2gδ

(
µ1)(ρ2 − ρ1)

+
1
2
(
ρ1 − ρ2)T ∇2gδ

(
µ2)(ρ1 − ρ2)

≤ −q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2∥∥ρ2 − ρ1∥∥2

7.2 Algorithm: Description and Performance Analysis 111

This establishes the inequality in (7.13) and completes the proof of the
lemma.

Proof of Corollary 7.5: This follows from an application of Lemma 7.4
with ρ1 = λ∗ and ρ2 = λ, using the additional observations that
∇gθ(λ) = Ax(λ) − b = Ax(λ) − Ax(λ∗), and ∇gθ (λ∗) = 0 because λ∗

is an optimal solution to (Dθ).

Proof of Lemma 7.6: The proof is by induction on k, the iteration
number. For the base case k = 1,

∥∥λk−1 − λ∗∥∥ =
∥∥λ0 − λ∗∥∥.

In the inductive case, we assume that the statement is true
for an iteration k, and we show that it then holds for iteration
k + 1, where k ≥ 1. As such, the inductive hypothesis is that λk−1 ∈
B
(
λ∗,
∥∥λ0 − λ∗∥∥). If the algorithm executes iteration k + 1, then

it does not terminate in iteration k, and λk − λk−1 = t∆λk−1. The
squared distance from λk to λ∗ can be expressed as follows.∥∥∥λk − λ∗

∥∥∥2
=
∥∥∥(λk − λk−1

)
+
(
λk−1 − λ∗

)∥∥∥2

=
∥∥∥λk−1 − λ∗

∥∥∥2
+
∥∥∥λk − λk−1

∥∥∥2

+2
(
λk − λk−1

)T (
λk−1 − λ∗

)
=
∥∥∥λk−1 − λ∗

∥∥∥2
+ t2

∥∥∥∆λk−1
∥∥∥2

+2t
(
∆λk−1

)T (
λk−1 − λ∗

)
(7.18)

The third term in the right-hand side of (7.18) can be bounded from
above by applying the inductive hypothesis, Corollary 7.5, Lemma 7.3,
and the Cauchy–Schwarz inequality.(

∆λk−1
)T (

λk−1 − λ∗
)

=
(
∇gθ

(
λk−1

)
+ uk−1

)T (
λk−1 − λ∗

)
≤ −q

(∥∥λ0 − λ∗∥∥)σmin
(
AT
)2∥∥∥λk−1 − λ∗

∥∥∥2
+
∥∥∥uk−1

∥∥∥∥∥∥λk−1 − λ∗
∥∥∥

112 Network Convex Optimization

≤
∥∥∥λk−1 − λ∗

∥∥∥2
(

α

(
1
2

+
ε

3

)
Q
(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2

−q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2)

Substituting this inequality into (7.18), and again applying the induc-
tive hypothesis and Lemma 7.3, yields∥∥∥λk − λ∗

∥∥∥2 ≤
∥∥∥λk−1 − λ∗

∥∥∥2
(

1 + t2
(

1 + α

(
1
2

+
ε

3

))2

×
(
Q
(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2)2

+ 2t

(
α

(
1
2

+
ε

3

)
Q
(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2

−q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2))

.

As αQ
(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2 = q

(∥∥λ0 − λ∗∥∥)σmin
(
AT
)2

/6, we
will have the sequence of inequalities

∥∥λk − λ∗∥∥ ≤ ∥∥λk−1 − λ∗∥∥ ≤∥∥λ0 − λ∗∥∥ provided that

t ≤
(
2 − 1

3

(1
2 + ε

3

))
q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2(

1 + α
(1

2 + ε
3

))2(
Q(‖λ0 − λ∗‖)σmax (AT)2

)2 .

The step size in (7.9) used by an inner run satisfies this inequality
because ε ≤ 1. This completes the proof of the inductive case and of
the lemma.

Proof of Lemma 7.7: If the stopping conditions are not satisfied in
iteration k, then Lemma 7.6 implies that λk−1,λk ∈ B

(
λ∗,
∥∥λ0 − λ∗∥∥).

The squared norm of the gradient of gθ at λk can be expressed as∥∥∥∇gθ

(
λk
)∥∥∥2

=
∥∥∥(∇gθ

(
λk
)

− ∇gθ

(
λk−1

))
+ ∇gθ

(
λk−1

)∥∥∥2

=
∥∥∥∇gθ

(
λk−1

)∥∥∥2
+
∥∥∥∇gθ

(
λk
)

− ∇gθ

(
λk−1

)∥∥∥2

+2
(
∇gθ

(
λk
)

− ∇gθ

(
λk−1

))T ∇gθ

(
λk−1

)
. (7.19)

7.2 Algorithm: Description and Performance Analysis 113

An upper bound on the second term in the right-hand side of (7.19)
follows from Lemmas 7.3 and 7.4.∥∥∥∇gθ

(
λk
)

− ∇gθ

(
λk−1

)∥∥∥
=
∥∥∥(Ax

(
λk
)

− b
)

−
(
Ax
(
λk−1

)
− b

)∥∥∥
=
∥∥∥Ax

(
λk
)

− Ax
(
λk−1

)∥∥∥
≤ Q

(∥∥λ0 − λ∗∥∥)σmax
(
AT
)2∥∥∥λk − λk−1

∥∥∥
= tQ

(∥∥λ0 − λ∗∥∥)σmax
(
AT
)2∥∥∥∆λk−1

∥∥∥
≤ t

(
1 + α

(
1
2

+
ε

3

))
Q
(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2∥∥∥∇gθ

(
λk−1

)∥∥∥
(7.20)

To bound the third term in the right-hand side of (7.19), we again
apply Lemmas 7.3 and 7.4.(
∇gθ

(
λk
)

− ∇gθ

(
λk−1

))T ∇gθ

(
λk−1

)
=
(
∇gθ

(
λk
)

− ∇gθ

(
λk−1

))T (
∆λk−1 − uk−1

)
≤ −tq

(∥∥λ0 − λ∗∥∥)σmin
(
AT
)2∥∥∥∆λk−1

∥∥∥2

+
∥∥∥uk−1

∥∥∥∥∥∥∇gθ

(
λk
)

− ∇gθ

(
λk−1

)∥∥∥
≤ −t

(
1−α

(
1
2

+
ε

3

))2

q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2∥∥∥∇gθ

(
λk−1

)∥∥∥2

+ tα

(
1
2

+
ε

3

)(
1 + α

(
1
2

+
ε

3

))
Q
(∥∥λ0 − λ∗∥∥)

× σmax
(
AT
)2∥∥∥∇gθ

(
λk−1

)∥∥∥2
. (7.21)

Substituting (7.20) and (7.21) in (7.19) yields∥∥∥∇gθ

(
λk
)∥∥∥2 ≤

∥∥∥∇gθ

(
λk−1

)∥∥∥2
(

1 + t2
(

1 + α

(
1
2

+
ε

3

))2

×
(
Q
(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2)2

114 Network Convex Optimization

+ 2t

(
1
6

(
1
2

+
ε

3

)(
1 + α

(
1
2

+
ε

3

))
−
(

1 − α

(
1
2

+
ε

3

))2)
q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2)

,

where we have used the fact that αQ
(∥∥λ0 − λ∗∥∥)σmax

(
AT
)2 =

q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2

/6. For the step size t in (7.9), we have∥∥∥∇gθ

(
λk
)∥∥∥2 ≤

∥∥∥∇gθ

(
λk−1

)∥∥∥2 × ζ,

where

ζ =

1 −



((
1 − α

(1
2 + ε

3

))2 − 1
6

(1
2 + ε

3

)(
1 + α

(1
2 + ε

3

)))
×q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2(

1 + α
(1

2 + ε
3

))
Q(‖λ0 − λ∗‖)σmax (AT)2



2
 .

Since α ≤ 1/6 and ε ≤ 1, it follows that

∥∥∥∇gθ

(
λk
)∥∥∥2 ≤

∥∥∥∇gθ

(
λk−1

)∥∥∥2

1−
(

q
(∥∥λ0 − λ∗∥∥)σmin

(
AT
)2

2Q(‖λ0 − λ∗‖)σmax (AT)2

)2
 ,

and the proof is complete.

Proof of Theorem 7.8: If an inner run terminates with a solution x(λ),
then the stopping conditions (7.7) and (7.8) are both satisfied for the
estimate ŝ = s + u of the vector s = Ax(λ). Applying (7.6) and the
triangle inequality yields

‖Ax(λ) − b‖ = ‖s − b‖ ≤ ‖ŝ − b‖ + ‖u‖ ≤ ‖ŝ − b‖ + ε1‖s‖

≤
(

2
3
ε + ε1

(
1 + ε1

1 − ε1

)(
1 +

2
3
ε

))
‖b‖

+ ε1

(
1 + ε1

1 − ε1

)(
1 +

2
3
ε

)
‖b‖

=
(

2
3
ε +

2εα

3

(
1 + ε1

1 − ε1

)(
1 +

2
3
ε

))
‖b‖.

7.2 Algorithm: Description and Performance Analysis 115

Because ε ≤ 1 and α ≤ 1/6, ε1 = εα/3 ≤ 1/18, and so we obtain
‖Ax(λ) − b‖ ≤ ε‖b‖.

Now, consider an iteration k such that
∥∥sk−1 − b

∥∥ ≤ (2/3)ε‖b‖.
Since

∣∣∥∥sk−1
∥∥ − ‖b‖∣∣ ≤ ∥∥sk−1 − b

∥∥, (7.6) implies that

(1 − ε1)
(

1 − 2
3
ε

)
‖b‖ ≤

∥∥∥ŝk−1
∥∥∥ ≤ (1 + ε1)

(
1 +

2
3
ε

)
‖b‖,

and (7.7) is satisfied. Moreover,∥∥∥ŝk−1 − b
∥∥∥ ≤

∥∥∥sk−1 − b
∥∥∥ +

∥∥∥uk−1
∥∥∥ ≤ 2

3
ε‖b‖ + ε1

∥∥∥sk−1
∥∥∥

≤
(

2
3
ε + ε1

(
1 +

2
3
ε

))
‖b‖

≤
(

2
3
ε + ε1

(
1 + ε1

1 − ε1

)(
1 +

2
3
ε

))
‖b‖,

and so (7.8) is satisfied as well. Thus, if
∥∥sk−1 − b

∥∥ ≤ (2/3)ε‖b‖, then
the inner run will terminate in iteration k.

Repeated application of Lemma 7.7 implies that, if an inner run
does not terminate in or before an iteration k, then

∥∥∥∇gθ

(
λk
)∥∥∥ ≤

(
1 − 1

4R2

) k
2

p
(
λ0) .

For

k ≥ 8R2 ln

(
3p
(
λ0
)

2ε‖b‖

)
,

we have
∥∥∇gθ

(
λk
)∥∥ ≤ (2/3)ε‖b‖, and hence the stopping conditions

will be satisfied and an inner run will terminate in the claimed number
of iterations.

Proof of Corollary 7.9: Given the solution x(λ) produced by an inner
run, define a vector ν (λ) ∈ Rn

++ by, for all i = 1, . . . ,n,

νi (λ) =
θ

xi (λ)
.

116 Network Convex Optimization

The pair (λ,ν (λ)) is a feasible solution to the dual problem (D) with
objective function value

g(λ,ν(λ)) = inf
x∈Rn

+

L(x,λ,ν(λ))

= −bT λ +
n∑

i=1

inf
xi∈R+

(
fi(xi) +

(
aT

i λ − θ

xi (λ)

)
xi

)
.

As the components of the vector x(λ) satisfy (7.2), we have
L(x(λ),λ,ν(λ)) = g(λ,ν(λ)).

From the definition of the Lagrangian and the fact that (λ,ν(λ)) is
feasible for (D),

f(x(λ)) + λT (Ax(λ) − b) − ν(λ)Tx(λ)

= L(x(λ),λ,ν(λ)) = g(λ,ν(λ)) ≤ OPT.

Applying the Cauchy–Schwarz inequality and Theorem 7.8 yields the
claimed upper bound on the objective function value of the vector x(λ).

f(x(λ)) ≤ OPT − λT (Ax(λ) − b) + ν(λ)Tx(λ)

≤ ‖λ‖‖Ax(λ) − b‖ +
n∑

i=1

(
θ

xi(λ)

)
xi(λ)

≤ OPT + ε‖b‖‖λ‖ + nθ.

7.3 Historical Notes

The design of distributed algorithms for convex minimization with lin-
ear constraints has been of interest since the early 1960s. The essence
of the work before the mid-1980s is well documented in the book by
Rockafellar [62]. Rockafellar [62] describes distributed algorithms for
monotropic programs, which are separable convex minimization prob-
lems with linear constraints. These algorithms leverage the decompos-
able structure of the Lagrange dual problem arising from the separable
primal objective. This structure has also been used to design parallel
and asynchronous algorithms for monotropic programs; see the book by
Bertsekas and Tsitsiklis [5] for further details. All of these algorithms
are by design distributed with respect to an appropriate constraint
graph GC , as opposed to an underlying network G. For the special case

7.3 Historical Notes 117

of a network routing problem, the distributed algorithm of Gallager [24]
is intuitively “closer” to being distributed with respect to G; however,
it still requires direct access to route information and hence is fully
distributed with respect to the constraint graph GC only.

The network resource allocation problems that motivate the algo-
rithm described here are special cases of monotropic programs. Kelly
et al. [36] used these known distributed algorithmic solutions to explain
the congestion control protocols for the resource allocation problem.
Moreover, they show that in an idealized model with perfect feedback
(in the form of packet drops) by network queues, these algorithms can
also be interpreted as distributed over G. See also Garg and Young [26]
for similar results that emphasize the rate of convergence to an optimal
solution. See the book by Srikanthan [66] for further work on congestion
control.

Flow control also serves as the motivation for the work of Bartal
et al. [4] on distributed algorithms for positive linear programming
(building on earlier work by Papadimitriou and Yannakakis [57] and
Luby and Nisan [44]). In this model, there is a primal agent for each
primal variable and a dual agent for each dual variable (or primal
constraint). In [4], direct communication is permitted between a dual
agent and all of the primal agents appearing in the corresponding con-
straint; in this model, Bartal et al. [4] give a decentralized algorithm
that achieves a (1 + ε)-approximation in a polylogarithmic number of
rounds. We note that the results presented here are from work by Mosk-
aoyama et al. [53]. Again, a remark about practicality of this algorithm
is in order. Indeed, like most solutions listed above, the algorithm pre-
sented here is unlikely to be useful as is in practice. However, it is a
proof-of-concept for existence of such distributed solution and variant
of it is likely to be useful in practice. Better solutions with practical
utility naturally form topic of future research.

8
Conclusions

We considered the question of designing Gossip algorithms motivated
by applications to next generation networks such as sensor networks,
peer-to-peer networks, mobile networks of vehicles, social networks, etc.
These algrotihms are built upon a gossip or rumor style unreliable,
asynchronous information exchange protocol. Due to immense simplic-
ity and wide applicability, this class of algorithms have emerged as a
canonical architectural solution for these next generation networks.

We started with the description of Gossip algorithm for informa-
tion exchange. On this Gossip based information layer, we presented
design of the linear dynamics based algorithm as well as the separa-
ble function computation algorithms. These algorithms were further
utilized to design the network scheduling and the network convex opti-
mization algorithm. Thus, in effect we described a whole ‘Gossip based
network algorithmic stack’ here. An important conclusion is that the
performance of Gossip algorithms is strongly dependent on the spectral
properties of underlying network graph.

118

Acknowledgments

The author would like to acknowledge support of NSF projects CNS
0626764, CCF 0728554 and HSD 0729361 while this article was written.
He wishes to thank Damon Mosk-Aoyama for various collaborations on
the topic of Gossip algorithms that have provided a bulk of the material
for this article. Author wishes to thank Jinwoo Shin for various useful
discussions. Finally, he also wishes to thank Tauhid Zaman and an
anonymous reviewer for suggestions to improve the readability of this
article.

119

Notations and Acronyms

Z, The set of all integers {. . . ,−2,−1,0,1,2, . . .}.
N, The non-negative integers.
R, R+ and R++, Real numbers, non-negative real numbers and

strictly positive real numbers respectively.
Bold small letters, (e.g., x), a vector [xi] ∈ Xn of real numbers

(X = R), or integers (X = Z). Usually, vectors will be assumed to be
represented in the ‘column’ form.

0 and 1 vector of all zeros and all ones, respectively.
1{·}, Indicator function for checking the ‘truth’ of the condition ‘·’,

i.e., 1true = 1 and 1false = 0. 1{x}, A vector whose ith component is
1{xi}.

〈x,y〉, ∑n
i=1 xiyi (for n-dimensional vectors x and y).

120

References

[1] D. J. Aldous, “Some inequalities for reversible Markov chains,” Journal of the
London Mathematical Society, vol. 25, pp. 564–576, 1982.

[2] P. Assouad, “Plongements lipschitziens dans Rn,” Bulletin de la Société
Mathématique de France, vol. 111, no. 4, pp. 429–448, 1983.

[3] O. Ayaso, “Information theoretic approaches to distributed function computa-
tion,” PhD thesis, Massachusetts Institute of Technology, 2008.

[4] Y. Bartal, J. W. Byers, and D. Raz, “Fast, distributed approximation algo-
rithms for positive linear programming with applications to flow control,” SIAM
Journal on Computing, vol. 33, no. 6, pp. 1261–1279, 2004.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Prentice Hall, 1989.

[6] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, “Conver-
gence in multiagent coordination, consensus, and flocking,” in Joint 44th IEEE
Conference on Decision and Control and European Control Conference (CDC-
ECC’05), December 2005.

[7] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a graph,”
SIAM Review, 2004.

[8] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE/ACM Transaction on Networking, vol. 14, no. SI,
pp. 2508–2530, 2006.

[9] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[10] P. Chaporkar, K. Kar, and S. Sarkar, “Throughput guarantees through maximal
scheduling in wireless networks,” in 43rd Allerton Conference on Communica-
tion Control and Computing, 2005.

121

122 References

[11] L. Chen, S. H. Low, M. Chang, and J. C. Doyle, “Optimal cross-layer congestion
control, routing and scheduling design in ad-hoc wireless networks,” in IEEE
INFOCOM, 2006.

[12] J. Considine, F. Li, G. Kollios, and J. W. Byers, “Approximate aggregation
techniques for sensor databases,” in 20th IEEE International Conference on
Data Engineering, April 2004.

[13] J. Dai and B. Prabhakar, “The throughput of switches with and without speed-
up,” in Proceedings of IEEE Infocom, pp. 556–564, 2000.

[14] S. Deb, M. Médard, and C. Choute, “Algebraic gossip: A network coding
approach to optimal multiple rumor mongering,” IEEE/ACM Transactions on
Networking, vol. 14, 2006.

[15] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications.
Springer, Second Edition, 1998.

[16] P. Diaconis, S. Holmes, and R. Neal, “Analysis of a non-reversible Markov chain
sampler,” Annals of Applied Probability, vol. 10, pp. 726–752, 2000.

[17] P. Diaconis and L. Saloff-Coste, “Moderate growth and random walk on finite
groups,” Geometric and Functional Analysis, vol. 4, no. 1, pp. 1–36, 1994.

[18] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Geographic gossip:
Efficient aggregation for sensor networks,” in 5th International ACM/IEEE
Symposium on Information Processing in Sensor Networks (IPSN ’06), April
2006.

[19] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah, “Optimal throughput-
delay scaling in wireless networks-part I: The fluid model,” IEEE Transactions
on Information Theory, vol. 52, no. 6, pp. 2568–2592, 2006.

[20] L. Elsner, I. Koltracht, and M. Neumann, “On the convergence of asyn-
chronous paracontractions with applications to tomographic reconstruction
from incomplete data,” Linear Algebra and Its Applications, no. 130, pp. 65–82,
1990.

[21] M. Enachescu, A. Goel, R. Govindan, and R. Motwani, “Scale free aggrega-
tion in sensor networks,” in International Workshop on Algorithmic Aspects of
Wireless Sensor Networks, 2004.

[22] A. Eryilmaz, A. Ozdaglar, D. Shah, and E. Modiano, “Distributed cross-layer
algorithms for the optimal control of multi-hop wireless networks,” IEEE/ACM
Transactions on Networking (accepted to appear), 2009.

[23] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” Journal of Computer and System Science, vol. 31, no. 2,
pp. 182–209, 1985.

[24] R. G. Gallager, “A minimum delay routing algorithm using distributed compu-
tation,” IEEE Transactions on Communications, vol. COM-25, no. l, pp. 73–85,
1977.

[25] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness.

[26] N. Garg and N. E. Young, “On-line end-to-end congestion control,” in IEEE
FOCS, pp. 303–312, 2002.

[27] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized scheduling algo-
rithms for high-aggregate bandwidth switches,” IEEE Journal of Select Areas

References 123

Communication High-performance Electronic Switches/Routers for High-speed
Internet, vol. 21, no. 4, pp. 546–559, 2003.

[28] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Transaction on Information Theory, vol. 46, no. 2, pp. 388–404, March 2000.

[29] B. Hajek and G. Sasaki, “Link scheduling in polynomial time,” IEEE
Transactions on Information Theory, vol. 34, 1988.

[30] R. Horn and C. Johnson, Matrix Analysis. Cambridge, UK: Cambridge
University Press, 1985.

[31] http://www.reuters.com/article/pressrelease/idUS55597+16-Jan-2008+BW
20080116.

[32] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transactions on Auto-
matic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[33] K. Jung and D. Shah, “Low delay scheduling in wireless network,” in IEEE
ISIT, 2007.

[34] K. Jung, D. Shah, and J. Shin, “Minimizing rate of convergence for iterative
algorithms,” IEEE Transactions on Information Theory (accepted to appear),
2009.

[35] A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,” (in press).
[36] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for communication

networks: Shadow prices, proportional fairness and stability,” Journal of the
Operational Research Society, vol. 49, no. 3, pp. 237–252, March 1998.

[37] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate
information,” in FOCS ’03: Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, p. 482, Washington, DC, USA: IEEE
Computer Society, 2003.

[38] D. Kempe and F. McSherry, “A decentralized algorithm for spectral analaysis,”
in Symposium on Theory of Computing, ACM, 2004.

[39] M. Koubarakis, C. Tryfonopoulos, S. Idreos, and Y. Drougas, “Selective infor-
mation dissemination in P2P networks: Problems and solutions,” SIGMOD
Record, vol. 32, no. 3, pp. 71–76, 2003.

[40] X. Lin, N. Shroff, and R. Srikant, “A tutorial on cross-layer optimization in
wireless networks,” Submitted, Available Through csl.uiuc.edu/rsrikant, 2006.

[41] X. Lin and N. B. Shroff, “Impact of imperfect scheduling in wireless networks,”
in IEEE INFOCOM, 2005.

[42] N. Linial and A. Wigderson, “Lecture notes on Expander Graphs,” http://
www.math.ias.edu/∼avi/BOOKS/expanderbookr1.pdf.

[43] L. Lovasz and P. Winkler, “Mixing times,” in Microsurveys in Discrete Prob-
ability, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, (D. Aldous and J. Propp, eds.), pp. 85–133, AMS, 1998.

[44] M. Luby and N. Nisan, “A parallel approximation algorithm for positive linear
programming,” in Proceedings of the 25th Annual ACM Symposium on Theory
of Computing, pp. 448–457, 1993.

[45] R. Madan, D. Shah, and O. Leveque, “Product multi-commodity flow in wire-
less networks,” IEEE Transactions on Information Theory, vol. 54, no. 4,
pp. 1460–1476, 2008.

124 References

[46] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: A tiny
aggregation service for ad-hoc sensor networks,” SIGOPS Operating Systems
Review, vol. 36, no. SI, pp. 131–146, 2002.

[47] L. Massoulié and M. Vojnovic, “Coupon replication systems,” in ACM
SIGMETRICS/Performance, 2005.

[48] N. McKeown, “iSLIP: A scheduling algorithm for input-queued switches,” IEEE
Transactions on Networking, vol. 7, no. 2, pp. 188–201, 1999.

[49] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100% throughput
in an input-queued switch,” in Proceedings of IEEE Infocom, pp. 296–302, 1996.

[50] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability. London:
Springer-Verlag, 1993.

[51] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in wireless
network via gossiping,” in ACM SIGMETRICS/Performance, 2006.

[52] R. Montenegro and P. Tetali, “Mathematical aspects of mixing times in Markov
chains,” Foundations and Trends in Theoretical Computer Science, vol. 1, no. 3,
pp. 237–354, 2006.

[53] D. Mosk-Aoyama, T. Roughgarden, and D. Shah, “Fully distributed algorithms
for convex optimization problems,” in International Symposium on Distributed
Computation (DISC), 2007.

[54] D. Mosk-Aoyama and D. Shah, “Information dissemination via network
coding,” in IEEE ISIT, 2006.

[55] D. Mosk-Aoyama and D. Shah, “Fast distributed algorithms for computing
separable functions,” IEEE Transactions on Information Theory, vol. 54, no. 7,
pp. 2997–3007, 2008.

[56] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” LIDS Report 2755, to appear in IEEE Transactions on Auto-
matic Control, 2008.

[57] C. Papadimitriou and M. Yannakakis, “Linear programming without the
matrix,” in Twenty-Fifth Annual ACM Symposium on the Theory of
Computing, 1993.

[58] M. Penrose, Random Geometric Graphs. Oxford Studies in Probability, Oxford:
Oxford University Press, 2003.

[59] D. Qiu and R. Srikant, “Modeling and performance analysis of bittorrent-like
peer-to-peer networks,” in ACM SIGCOMM, pp. 367–378, 2004.

[60] S. Rajagopalan, D. Shah, and J. Shin, “Network adiabatic theorem:
An efficient randomized protocol for contention resolution,” in ACM
SIGMETRICS/Performance, 2009.

[61] O. Reingold, A. Wigderson, and S. Vadhan, “Entropy waves, The zig-zag graph
product, and new constant-degree expanders and extractors,” Annals of Math-
ematics, 2002.

[62] T. Rockafellar, Network Flows and Monotropic Optimization. Wiley-
Interscience, (republished by Athena Scientific, 1998), 1984.

[63] K. Savla, F. Bullo, and E. Frazzoli, “On traveling salesperson problems for
Dubins’ vehicle: stochastic and dynamic environments,” in IEEE CDC-ECC,
pp. 4530–4535, Seville, Spain, December 2005.

References 125

[64] D. Shah, “Stable algorithms for input queued switches,” in Proceedings of Aller-
ton Conference on Communication, Control and Computing, 2001.

[65] D. Shah and D. J. Wischik, “Optimal scheduling algorithm for input queued
switch,” in IEEE INFOCOM, 2006.

[66] R. Srikant, The Mathematics of Internet Congestion Control. Birkhäuser, 2004.
[67] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing

systems and scheduling policies for maximum throughput in multihop radio
networks,” IEEE Transactions on Automatic Control, vol. 37, pp. 1936–1948,
1992.

[68] L. Trevisan, “Non-approximability results for optimization problems on
bounded degree instances,” in ACM STOC, 2001.

[69] J. Tsitsiklis, “Problems in decentralized decision making and computation,”
PhD dissertation, Lab. Information and Decision Systems, MIT, Cambridge,
MA, 1984.

[70] www.bbc.co.uk/iplayer.

