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Abstract—The Undecided-State Dynamics is a well-known pro-
tocol that achieves Consensus in distributed systems formed by
a set of n anonymous nodes interacting via a communication
network. We consider this dynamics in the parallel PULL
communication model on the complete graph for the binary case,
i.e., when every node can either support one of two possible colors
(say, Alpha and Beta) or stay in the undecided state. Previous
work in this setting only considers initial color configurations
with no undecided nodes and a large bias (i.e., Θ(n)) towards
the majority color.

An interesting open question here is whether this dynamics
reaches consensus quickly, i.e. within a polylogarithmic number
of rounds.

In this paper we present an unconditional analysis of the
Undecided-State Dynamics which answers to the above question
in the affermative. Our analysis shows that, starting from any
initial configuration, the Undecided-State Dynamics reaches a
monochromatic configuration within O(logn) rounds, with high
probability (w.h.p.). This bound is tight since a lower bound
Ω(logn) for this process is known. Moreover, we prove that if
the initial configuration has bias Ω(

√
n logn), then the dynamics

converges toward the initial majority color within O(logn) round,
w.h.p.

I. INTRODUCTION

Strong research interest has been recently focussed on the
study of simple, local mechanisms for Consensus problems in
distributed systems [3], [2], [17], [18], [23], [24]. In one of the
basic versions of the consensus problem, the system consists of
a finite set of n anonymous entities (nodes) that run elementary
operations and interact by exchanging messages. Every node
initially supports a value (i.e. a color) chosen from a finite
alphabet Σ and a Consensus Protocol is a local procedure that,
starting from any color configuration, let the system converge in
finite time to a monochromatic configuration where every node
supports the same color. The consensus is valid if the winning
color is a valid one: It is one among those initially supported
by at least one node. Moreover, the consensus configurations
must result equilibria of the protocol process: Once the system
reaches a consensus configuration, it will stay there forever
unless some external event takes place.

We study the consensus problem in the PULL model [12],
[16], [21] in which, at every round, each active node of a
communication network contacts one neighbor uniformly at
random to pull information. A well-studied natural consensus
protocol in this model is the Undecided-State Dynamics1 (for
short, the U-Dynamics) in which the state of a node can be
either a color or the undecided state. When a node is activated,
it pulls the state of a random neighbors and updates its state
according to the following updating rule (see Table I): If a
colored node pulls a different color from its current one, then it
becomes undecided, while in all other cases it keeps its color;
moreover, if the node is in the undecided state then it will take
the state of the pulled neighbor.

The U-Dynamics has been studied in both sequential and
parallel models: Informally, in the former, at every round, only
one random node is activated, while in the latter, at every
round, all nodes are activated synchronously.

As for the sequential model2, [3] provides an unconditional
analysis showing (among other results) that the U-Dynamics
solves the binary consensus problem (i.e. when |Σ| = 2) in
the complete graph within O(n log n) activations (and, thus in
O(log n) “parallel” time), with high probability3.

As for the parallel PULL model, even though it is easy to
verify that the U-Dynamics achieves consensus in the complete
graph (with high probability), the convergence time of this
dynamics is still an interesting open issue, even in the binary
case. We remark that the stochastic process yielded by the
parallel dynamics significantly departs from the process yielded
by the sequential one. To get just one immediate evidence
of this difference, observe that, in the former model, the
system can converge to the (non-valid) configuration where

1In some previous papers [24] on the binary case (|Σ| = 2), this protocol
has been also called the Third-State Dynamics. We here prefer the term
“undecided” since it also holds for the non-binary case and, moreover, the term
well captures the role of this additional state.

2[3] in fact considers the Population-Protocol model which is, in our specific
context, equivalent to the sequential PULL model.

3As usual, we say that an event En holds w.h.p. if P (En) > 1− n−Θ(1).



all nodes are undecided even if starting from a “fully-colored”
configuration (where all nodes are not undecided). On the
other hand, it is easy to see that this evolution cannot happen
in the sequential setting. A deeper, crucial difference lies in
the random number of nodes that may change color at every
round: In the sequential model, this is at most one4, while in
the parallel one, all nodes may change state in one shot and
indeed, for most phases of the process, the expected number
of changes is linear in n. It thus turns out that the probabilistic
arguments used in the analysis of [3] appear not useful in the
parallel setting. In [5], the author analyze the U-Dynamics in
the parallel PULL model on the complete graph when the
alphabet Σ has size k, where k = o(n1/3). The analysis in [5]
considers this dynamics as a protocol for Plurality Consensus
[2], [3], [22], a variant of Consensus, where the goal is to
reach consensus on the color that was initially supported by
the plurality of the nodes: Their analysis requires that the initial
configuration must have a relatively-large bias s = c1 − c2
between the size c1 of the (unique) initial plurality and the
size c2 of the second-largest color. More in details, in [5] it
is assumed that c1 > αc2, for some absolute constant α > 1
and, thus, this condition for the binary case would result into
requiring a very-large initial bias, i.e., s = Θ(n). This analysis
clearly does not show that the U-Dynamics efficiently solves
the binary consensus problem, mainly because it does not
manage balanced initial configurations.

Our results: We prove that, starting from any color con-
figuration5 on the complete graph, the U-Dynamics reaches a
monochromatic configuration (thus consensus) within O(log n)
rounds, with high probability. This bound is tight since, for
some (in fact, a large number of) initial configurations, the
process requires Ω(log n) rounds to converge.

Not assuming a large initial bias of the majority color sig-
nificantly complicates the analysis. Indeed, the major technical
issues arise from the analysis of balanced initial configurations
where the system “needs” to break symmetry without having a
strong expected drift towards any color. Essentially, previous
analysis of this phase consider either sequential processes
of interacting particles that can be modeled as birth-and-
death chains [3] or parallel processes whose local rule is
fully symmetric w.r.t. the states/colors of the nodes (such as
majority rules)[6], [17]. The U-Dynamics process falls neither
in the former nor in the latter scenario: it works in parallel
rounds and the role of the undecided nodes makes the local
rule not symmetric. Informally speaking, in Section IV, we
show an “efficient” way to reduce all “critical” almost-balanced
starting of the process to a specific regime along which the
system keeps a number q of undecided nodes which is some
suitable constant fraction of n until the bias s has reached an
Ω(
√
n log n) magnitude: In other words, during this regime,

with very high probability the system never jumps to almost-
balanced configurations having either too many or too few
undecided nodes. This fact is crucial essentially because of

4This number becomes 2 if the sequential communication model activate a
random edge per round, rather than one single node [3].

5Our analysis also considers initial configurations with undecided nodes.

two reasons: along this regime, (i) the variance of the bias s is
large (i.e. Θ(n)) and (ii) whenever the bias s gets Ω(

√
n), its

drift turns out to be exponential with non-negligible, increasing
probability (w.r.t. s itself). Then, using a suitable coupling to a
“simplified” pruning process, we can apply (a suitable version)
of a general lemma [17] (see Claim 9.2 in [17]) that provides a
logarithmic bound on the hitting time of some Markov chains
that have Properties (i) and (ii) above.

The symmetry-breaking phase terminates when the
U-Process reaches some configuration having a bias s =
Ω(
√
n log n). Then (see Section V) we prove that, starting

from any configuration having that bias, the process reaches
consensus within O(log n) rounds, with high probability. Even
though our analysis of this “majority” part of the process is
based on standard concentration arguments, it must cope with
some non-monotone behaviour of the key random variables
(such as the bias and the number of undecided nodes at the next
round): Again, this is due to the non-symmetric role played
by the undecided nodes. A good intuition about this “non-
monotone” process can be gained by looking at the mutually-
related formulas giving the expectation of such key random
variables (see Equations (1)-(3)). Our refined analysis shows
that, during this majority phase, the winning color never
changes and, thus, the U-Dynamics also ensures Plurality
Consensus in logarithmic time whenever the initial bias is
s = Ω(

√
n log n).

Interestingly enough, we also show that configurations with
s = O(

√
n) exist so that the system may converge toward the

minority color with non-negligible probability.
Further motivation and related work: On the U-Dynamics.

The interest in the U-Dynamics arises in fields beyond the
borders of Computer Science and it seems to have a key-
role in important biological processes modelled as so-called
chemical reaction networks [11], [18]. For such reasons, the
convergence time of this dynamics has been analyzed on
different communication models [1], [3], [4], [8], [14], [17],
[19], [22], [24].
As previously mentioned, the U-Dynamics has been analysed
in the parallel PULL model in [5] and their results concern the
evolution of the process for the multi-color case when there is
a significant initial bias (as a protocol for plurality consensus).
As for the sequential model, the U-Dynamics has been
introduced and analyzed in [3] in the complete graph. They
prove that this dynamics, with high probability, converges to a
valid consensus within O(n log n) activations and, moreover,
it converges to the majority whenever the initial bias is
ω
(√
n log n

)
.

Still concerning the sequential model, [22] recently analyzes,
besides other protocols, the U-Dynamics in arbitrary graphs
when the intitial configuration is sampled uniformly at random
between the two colors. In this (average-case) setting, they
prove that the system converges to the initial majority color
with higher probability than the initial minority one. They also
give results for special classes of graphs where the minority
can win with large probability if the initial configuration is
chosen in a suitable way. Their proof for this last result relies



on an exponentially-small upper bound on the probability that
a certain minority can win in the complete graph (see [22] for
more details).
In [4], [8], [19], [24], the same dynamics for the binary case
has been analyzed in further sequential communication models.

On some other consensus dynamics. Recently, further simple
consensus protocols have been deeply analyzed in several
papers, thus witnessing the high interest of the scientific
community on such processes [3], [7], [10], [11], [14], [15],
[17], [24].

The parallel 3-MAJORITY is a protocol where at every round,
each node picks the colors of three random neighbors and
updates its color according to the majority rule (taking the first
one or a random one to break ties). All theoretical results for 3-
MAJORITY consider the complete graph. The authors of [7] as-
sume that the bias is Ω(min{

√
2k, (n/ log n)

1/6} ·
√
n log n).

Under this assumption, they prove that consensus is reached
with high probability in O(min{k, (n/ log n)

1/3} · log n)

rounds, and that this is tight if k 6 (n/ log n)
1/4. The

first result without bias [6] restricts the number of initial
colors to k = O(n1/3). Under this assumption, they prove
that 3-MAJORITY reaches consensus with high probability
in O((k2(log n)

1/2
+ k log n) · (k + log n)) rounds. Very re-

cently, such result has been generalized to the whole range of
k in [9].

In [17] the authors provide an analysis of the 3-median
rule, in which every node updates its value to the median of
its random sample. They show that this dynamics converges
to an almost-agreement configuration (which is even a good
approximation of the global median) within O(log k·log log n+
log n) rounds, w.h.p. It turns out that, in the binary case,
the median rule is equivalent to the 2-CHOICES dynamics, a
variant of 3-MAJORITY, thus their result implies that this is
a stabilizing consensus protocol with O(log n) convergence
time. As mentioned earlier, our analysis borrows a hitting-time
bound on general Markov chains from [17].

In [14], [15], the authors consider the 2-CHOICES dynamics
for plurality consensus in the binary case (i.e. k = 2). For
random d-regular graphs, [14] proves that all nodes agree on
the majority color in O(log n) rounds, provided that the bias
is ω(n ·

√
1/d+ d/n). The same holds for arbitrary d-regular

graphs if the bias is Ω(λ2 · n), where λ2 is the second largest
eigenvalue of the transition matrix. In [15], these results are
extended to general expander graphs.

II. PRELIMINARIES

We analyze the parallel version of the dynamics called
U-Dynamics in the (uniform) PULL model on a complete
graph: Starting from an initial configuration where every node
supports a color, i.e. a value from a set Σ of possible colors, at
every round, each node u pulls the color of a randomly-selected
neighbor v. If the color of node v differs from its own color,
then node u enters in an undecided state (an extra state with
no color). When an node is in the undecided state and pulls a
color, it gets that color. Finally, an node that pulls either an

undecided node or an node with its own color remains in its
current state.

u
∖
v undecided color i color j

undecided undecided i j
i i i undecided
j j undecided j

TABLE I
THE UPDATE RULE OF THE U-DYNAMICS WHERE i, j ∈ [k] AND i 6= j .

In this paper we consider the case in which there are two
possible colors (say color Alpha and color Beta). Let us
name C the space of all possible configurations and observe
that, since we are on the complete graph, a configuration x ∈ C
is completely determined by the number of nodes with color
Alpha and the number of nodes with color Beta, say a(x)
and b(x), respectively.

It is convenient to give names also to two other quantities that
will appear often in the analysis: the number q(x) = n−a(x)−
b(x) of undecided nodes and the difference s(x) = a(x)− b(x)
between the numbers of Alpha-colored and Beta-colored
nodes. We will call s(x) the bias of configuration x. Notice that
any two of the quantities a(x), b(x), q(x), and s(x) uniquely
determine the configuration. When it will be clear from the
context, we will omit x and write a, b, q, and s instead of
a(x), b(x), q(x), and s(x).

Observe that the U-Dynamics defines a finite-state Markov
chain {Xt}t>0 with state space C and three absorbing states,
namely, q = n, a = n, and b = n. We call U-Process the
random process obtained by applying the U-Dynamics starting
at a given state. Once we fix the configuration x at round t of
the process, i.e. Xt = x, we use the capital letters A,B,Q, and
S to refer to the random variables a(Xt+1), b(Xt+1), q(Xt+1),
s(Xt+1).

From the definition of U-Dynamics it is easy to compute
the following expected values (see also Section 3 in [5])

E [A |Xt = x] = a

(
a+ 2q

n

)
(1)

E [Q |Xt = x] =
q2 + 2ab

n
(2)

E [S |Xt = x] =
a(a+ 2q)

n
− b(b+ 2q)

n
= s

(
1 +

q

n

)
(3)

A. The expected evolution of the U-Dynamics

Equations (1)-(3) can be used to have a preliminary intuitive
idea on the expected evolution of the U-Dynamics. From (3) it
follows that the bias s increases exponentially, in expectation,
as long as the number q of undecided nodes is a constant
fraction of n (say, q > δn, for some positive constant δ). By
rewriting (2) in terms of q and s we have that

E [Q |Xt = x] =
q2 + 2ab

n
=

2q2 + (n− q)2 − s2

2n

>
n

3
− s2

2n
(4)



where in the inequality we used the fact that the minimum of
2q2 + (n− q)2 is achieved at q = n/3 and its value is 2n2/3.
From (4) it thus follows that, as long as the magnitude of the
bias is smaller than a constant fraction of n (say |s| < 2n/3),
the expected number of undecided nodes will be larger than a
constant fraction of n at the next round (say, E [Q |Xt = x] >
n/9).

When the magnitude of the bias |s| reaches 2n/3, it is easy
to see that the expected number of nodes with the minority
color decreases exponentially. Indeed, suppose wlog that B is
the minority color and let us rewrite (1) for B and in terms of
b and s, we get

E [B |Xt = x] = b

(
b+ 2q

n

)
= b

(
1− 2s+ 3b− n

n

)
.

(5)
Hence, when s > 2n/3 we have that E [B |Xt = x] 6 (1 −
2/3)b.

The above sketch of the analysis in expectation would
suggest that the process should end up in a monochromatic
configuration within O(log n) rounds. Indeed, in Theorem 2
we prove that this is what happens with high probability (w.h.p.,
from now on) when the process starts from a configuration
that already has some bias, namely s = Ω(

√
n log n).

When the process starts from a configuration with a smaller
bias, the analysis in expectation looses its predictive power.
As an extremal example, observe that when a = b = n/3 the
system is “in equilibrium” according to (1)-(3). However, the
equilibrium is “unstable” and the symmetry is broken by the
variance of the process (as long as s = o(

√
n)) and by the

increasing drift towards majority (as soon as s >
√
n). As

mentioned in the Introduction, the analysis of this symmetry-
breaking phase is the key technical contribution of the paper
and it will be described in Section IV. This analysis will show
that, starting from any initial configuration, the system reaches
a configuration where the magnitude of the bias is Ω(

√
n log n)

within O(log n) rounds, w.h.p.

III. MAIN RESULTS AND THE DIGRAPH OF THE U-PROCESS’
PHASES

As informally discussed in the introduction, we prove
the two following results characterizing the evolution of the
U-Dynamics on the synchronous PULL model in the complete
graph.

Theorem 1 (Consensus). Let the U-Process start from any
configuration in C. Then the process converges to a (valid)
monochromatic configuration within O(log n) rounds, w.h.p.
Furthermore, if the initial configuration has at least one
colored node (i.e. q 6 n − 1), then the process converges
to a configuration such that |s| = n, w.h.p.

Theorem 2 (Plurality consensus). Let γ be any positive
constant and assume that the U-Process starts from any biased
configuration such that |s| > γ

√
n log n and assume w.l.o.g.

the majority color is Alpha. Then the process converges to
the monochromatic configuration with a = n within O(log n)
rounds, w.h.p. Furthermore, the result is almost tight in a

Fig. 1. {H1, . . . , H7} is the considered partitioning of the configuration
space C. On the x axis we represent the bias s, on the y axis the number
of undecided nodes q. Missing arrows are transitions that have negligible
probabilities.

twofold sense: (i) An initial configuration exists, with |s| =
Ω(
√
n log n), such that the process requires Ω(log n) rounds

to converge w.h.p., and (ii) there is an initial configuration with
|s| = Θ(

√
n) such that the process converges to the minority

color with constant probability.

Outline of the two proofs. The two theorems above are
consequences of our refined analysis of the evolution of the
U-Process. The analysis is organized into a set of possible
process phases, each of them is defined by specific ranges of
parameters q and s. A high-level description of this structure
is shown in Fig. 1 where every rectangular region represents a
subset of configurations with specific ranges of s and q and
it is associated to a specific phase. In details, let γ be any
positive constant, then the regions are defined as follows: H1 is
the set of configurations such that s 6 γ

√
n log n and q > 1

2n;
H2 is the set of configurations such that s 6 γ

√
n log n and

1
18n 6 q 6 1

2n; H3 is the set of configurations such that
s 6 γ

√
n log n and q 6 1

18n. H4 is the set of configurations
such that γ

√
n log n 6 s 6 n√

6
and q > 1

6n; H5 is the set of
configurations such that γ

√
n log n 6 s 6 2

3n and q 6 1
6n; H7

is the set of configurations such that 2
3n 6 s 6 n− 5

√
n log n

and q 6
√
n log n. H6 is the set of configurations such that

s > 2
3n minus H7.

For each region, Fig. 1 specifies our upper bound on the
exit time from the corresponding phase, while black arrows
represent all possible phase transitions which may happen with
non-negligible probability.

As a first, important remark, we point out that the scheme
of Fig. 1 can be seen as a directed acyclic graph G with



a single sink H6, which is reachable from any other region.
We also remark that, starting from certain configurations, the
monochromatic state may be reached via different paths in G.
This departs from previous analysis of consensus processes
[5], [7], [17] in which the phase transition graph is essentially
a path.

We now outline the proofs of the two main results of this
paper.

Outline of the Proof of Theorem 2. Consider an initial con-
figuration x such that s(x) > γ

√
n log n, for some positive

constant γ, and assume w.l.o.g. that the majority color in x is
Alpha. In Section V, we first show (see Lemma 6) that if the
process lies in H4 the bias grows exponentially fast and thus
the process enters in H6 within O(log n) rounds. Then we
prove Lemma 7 stating that, starting from any configuration
in H6, the process ends in the monochromatic configuration
where a = n in O(log n) rounds. Next, we show that, starting
from any configuration in H5, the process falls into H4 or
in H6 in one round (Lemma 8) and that, starting from any
configuration in H7 the process falls into H4, H5 or H6 in
one round (Lemma 9). Concerning the tightness of the result
stated in the second part of the theorem, we have that the lower
bound on the convergence time is an immediate consequence
of Claim (ii) of Lemma 6. While, Claim (ii), concerning the
lower bound on the initial bias, will be proved in Claim 13
which is provided in Appendix P.

Outline of the Proof of Theorem 1. We first observe that the
configuration where all nodes are undecided (i.e. q = n) is
an absorbing state of the U-Process and thus, for this initial
configuration, Theorem 1 trivially holds. In Section IV, we will
show that, starting from any balanced configuration, i.e. with
|s| = o(

√
n log n), the U-Process “breaks symmetry” reaching

a configuration y with |s(y)| = Ω(
√
n log n) within O(log n)

rounds, w.h.p. Then, the thesis easily follows by applying
Theorem 2 with initial configuration y. As for the symmetry-
breaking phase, in Lemma 3 we prove that, if the process starts
from a configuration in H1 or H3 (see Figure 1), then after
O(log n) rounds either the bias between the two colors becomes
Ω(
√
n log n) or the system reaches some configuration in H2,

w.h.p. In Lemma 5 we then prove that, if the process is in a
configuration in H2, then the bias between the two colors will
become Ω(

√
n log n) within O(log n) rounds, w.h.p.

IV. SYMMETRY BREAKING

In this section we show that, starting from any (almost-)
balanced configuration, i.e. those with |s| = o(

√
n log n), the

U-Process “breaks symmetry” reaching a configuration with
|s| = Ω(

√
n log n) within O(log n) rounds, w.h.p. This part

of our analysis is organized as follows.
In Lemma 3 we prove that, if the process starts in a

configuration in H1 or H3 (see Figure 1), i.e., when the number
of undecided nodes is either smaller than n/18 or larger than
n/2, then, after O(log n) rounds, either the bias between the
two colors already gets magnitude Ω(

√
n log n) or the system

reaches some configuration in H2 (i.e., a configuration where

the number of undecided nodes is between n/18 and n/2). In
Lemma 5 we then prove that, if the process is in a configuration
in H2, then the bias between the two colors will get magnitude
Ω(
√
n log n) within O(log n) rounds, w.h.p.

Lemma 3 is a simple consequence of the following three
claims. Claims 1 and 2 follow from Chernoff bound applied
to (4) and (1), respectively (their proofs can be found in
Appendix C).

Claim 1. Let x ∈ C be any configuration with s(x) 6 (2/3)n.
Then, at the next round, the number of undecided nodes of the
U-Process is Q > n/18, w.h.p.

Claim 2. Let x ∈ C be any configuration with q(x) > n/2
and a(x) > log n. Then, at the next round , the number of
Alpha-colored nodes of the U-Process is A > (1 + 3/4)a(x),
w.h.p.

The next claim is a consequence of fact that, when the
number of colored nodes is very small, the U-Process behaves
essentially like a pull process.

Claim 3. Starting from any configuration x ∈ C with 1 6
a(x) + b(x) < 2 log n, the U-Process reaches a configuration
X′ with a(X′) + b(X′) > 2 log n within O(log n) rounds, w.h.p.

Sketch of Proof. Let us consider the random variable counting
the number of colored nodes A+B and its evolution during
the process. As long as 1 6 a(x) + b(x) < 2 log n, the
probability that in one round an Alpha-colored node picks
a Beta-colored node (or vice versa) is less than (2 logn)2

n .
Applying the union bound for O(log n) rounds, we get that
the probability that this “bad” event happens in one of such
rounds is negligible.

Now, assuming no such bad events happen, the colored nodes
will remain colored. Moreover, we know that an undecided node
becomes colored if it picks a colored node. So, discarding the
difference between colors, the process over the undecided nodes
turns out to be a standard rumor-spreading process via PULL
messages (a colored node is in fact an informed node). The
claim then follows by observing that this spreading process is
known to inform at least 2 log n nodes within O(log n) rounds,
w.h.p. (see for instance [20]).

Lemma 3 (Phases H1 and H3: Starters). Starting from any
configuration x ∈ H1, the U-Process reaches a configuration
X′ ∈ (H2 ∪H4) within O(log n) rounds, w.h.p.
Starting from any configuration x ∈ H3, the U-Process reaches
a configuration X′ ∈ (H1 ∪H2 ∪H4) in one round, w.h.p.

If the system lies in a configuration of H2, we need more
complex probabilistic arguments to prove that the bias between
the two colors reaches Ω(

√
n log n) within O(log n) rounds

w.h.p.
We will make use of a useful bound on some hitting time

of a Markov chain having suitable drift properties. This result
can be obtained via a simple adaptation of Claim 2.9 in [17]
while a self-contained proof is given in Appendix G.



Lemma 4. Let {Xt}t be a Markov Chain with finite state
space Ω and let f : Ω 7→ [0, n] be a function that maps
states to integer values. Let m = O(

√
n log n) be a target

value and let h, c1, c2, ε be four positive constants with h >
3, (3c2−1)h > 2, and εh > 2. If the following properties hold

1) For any x ∈ Ω such that f(x) < h
√
n

P
(
f(Xt+1) < h

√
n|Xt = x

)
< c1 < 1 ,

2) For any x ∈ Ω such that h
√
n 6 f(x) < m

P (f(Xt+1) < (1 + ε)f(Xt)|Xt = x) < e−c2f(x)2/n ,

then the process reaches a state x with f(x) > m within
O(log n) rounds, w.h.p.

The basic idea would be to apply the above lemma to the
U-Process with f(Xt) = |s(Xt)| in order to get an upper bound
on the number of rounds needed to reach a configuration such
that the bias is Ω(

√
n log n). To this aim we first show that

for any configuration in H2 Properties 1 and 2 in the above
lemma are satisfied.

Claim 4. If n
18 6 q 6 n

2 then four positive constants h, c1, c2, ε
exist with h > 3, (3c2 − 1)h > 2, and εh > 2 such that:

1) If s < h
√
n then P (S < h

√
n) < c1;

2) If s > h
√
n then P (S > (1 + ε)s) > 1− e−c2s2/n.

Sketch of Proof. From the additive form of the Chernoff bound
(see Appendix B) it follows that

P

(
A < E [A]− 1

72
s

)
< e−2s2/722n ,

P

(
B > E [B] +

1

72
s

)
< e−2s2/722n .

Thus:

S = A−B > E [A]− 1

72
s−E [B]− 1

72
s

= E [A−B]− 1

36
s = E [S]− 1

18
s

=
(

1 +
q

n

)
s− 1

36
s =

(
1 +

1

18
− 1

36

)
s

=

(
1 +

1

36

)
s .

Hence, the second item is obtained setting ε = 1
36 and c2 = 2

722 .
As for the first item, we observe that the bias s is a difference
of two binomial distributions. So we can choose a large enough
constant h to ensure the parameter conditions in Lemma 4, i.e.,
h > 3, (3c2−1)h > 2, εh > 2, while keeping c1 a constant less
than one. The formal proof is a simple adaptation of Claim 13
in Appendix P.

We remark that the above claim ensures Properties 1 and 2 of
Lemma 4 whenever 1

18n 6 q 6 1
2n. Unfortunately, Lemma 4

requires such properties to hold for any (almost-)balanced
configuration: if q = n− o(n) Property 1 does not hold, while
Property 2 is not satisfied if q = o(n). In order to manage
this issue, in Subsection IV-A, we define a pruned process, a

variant of U-Process where it is possible to apply Lemma 4.
Then, in Subsection IV-B we show a coupling between the
U-Process and the pruned one.

A. The pruned process

The helpful, key point is that, starting from any configuration
x ∈ H2, the probability that the process goes in one of those
“bad” configurations with q < 1

18n or q > 1
2n is negligible

(see Claim 5). Thus, intuitively speaking, all the configurations
actually visited by the process before exiting H2 do satisfy
Lemma 4. In order to make this intuitive argument rigorous,
in what follows, we first define a suitably pruned process by
removing from H2 all the unwanted transitions.

Let s̄ ∈ [n] and z(s̄) the configuration such that s(z(s̄)) = s̄
and q(z(s̄)) = 1

2n. Let px,y the probability of a transition from
the configuration x to the configuration y in the U-Process. We
define a new stochastic process: the U-Pruned-Process. The
U-Pruned-Process behaves exactly like the original process
but every transition from a configuration x ∈ H2 to a
configuration y such that q(y) < 1

18n or q(y) > 1
2n now

have probability p′x,y = 0. Moreover, for any s̄ ∈ [n], starting
from any configuration x ∈ H2 the probability of reaching the
configuration z(s̄) is:

p′x,z(s̄) = px,z(s̄) +
∑

y:(q(y)< 1
18n∨q(y)> 1

2n)
∧
s(y)=s̄

px,y.

Finally, all the other transition probabilities remain the same.
Observe that, since the U-Pruned-Process is defined in such

a way it has exactly the same marginal probability of the
original process with respect to the random variable s, then
Claim 4 holds for the U-Pruned-Process as well. Thus, we can
choose constants h, c1, c2, ε such that the two properties of
Lemma 4 are satisfied. Then we get the following:

Corollary 1. Starting from any configuration x ∈ H2, the
U-Pruned-Process reaches a configuration X′ ∈ H4 within
O(log n) rounds, w.h.p.

B. Back to the original process.

The definition of the U-Pruned-Process suggests an obvious
coupling between the original process and the pruned one: if
the two process are in different state they act independently, if
they are in the same configuration x they move together unless
the U-Process go in a configuration y such that q(y) < 1

18n or
q(y) > 1

2n. In that case the U-Pruned-Process goes in z(s(x)).
Using this simple coupling, we first show that, if the two

processes are in the same configuration, the probability that
they get separated is negligible. Then, we show that the H2

exit time of the pruned procedure stochastically dominate the
H2 exit time of the original process.

Claim 5. For every configuration x ∈ H2, the probability
that the number of undecided nodes in the next round of the
U-Process is not between n/18 and n/2 is

P
(
q(Xt+1) /∈

[ n
18
,
n

2

]
|Xt = x

)
6 e−Θ(n).



Lemma 5 (Phase H2). Starting from any configuration x ∈ H2,
the U-Process reaches a configuration X′ ∈ H4 withinO(log n)
rounds, w.h.p.

Proof: Let {Xt} and {Yt} be the original process and the
pruned one, respectively. Let x ∈ H2, note that if Xt = Yt = x
then

Yt+1 =

{
Xt+1 if Xt+1 ∈ H2

z(s(Xt+1)) otherwise

Let τ = inf{t ∈ N : |s(Xt)| >
√
n log n} and let τ∗ =

inf{t ∈ N : |s(Yt)| >
√
n log n}. For any x ∈ H2 and any

round t we define ρtx the event {Xt} and {Yt} separated
at round t + 1, i.e. ρtx = (Xt = Yt = x)

∧
(Xt+1 6= Yt+1).

Observe that, if the two coupled processes start in the same
configuration x0 ∈ H2 and τ > c log n, then either τ∗ > c log n
as well, or a round t 6 c log n exists such that, for some x ∈ H2

the event ρtx occurred. Hence,

Px0,x0 (τ > c logn) 6

6 Px0,x0

(
{τ∗ > c logn} ∪

{
∃t 6 c logn
∃x ∈ H2

: ρtx

})
6 Px0,x0 (τ∗ > c logn) + Px0,x0

(
∃t 6 c logn
∃x ∈ H2

: ρtx

)
. (6)

As for the first term in (6), from the analysis of the pruned
process (Corollary 1) we have that it is upper bounded by 1/n.
As for the second term, we have that

Px0,x0

(
∃t 6 c log n
∃x ∈ H2

: ρtx

)
6
c logn∑
t=1

Px0,x0
(
∃x ∈ H2 : ρtx

)
=

c logn∑
t=1

∑
x∈H2

Px0,x0
(
ρtx
)

6
c logn∑
t=1

n2

e−Θ(n)
(7)

6
1

n
,

where in 7 we used Claim 5 and the fact that |H2| is at most
all the possible combinations of the parameters q and s.

V. CONVERGENCE TO THE MAJORITY

In this section we provide the arguments needed to prove
our second main result, namely Theorem 2, which essentially
states that starting from any sufficiently biased configuration,
the U-Process converges to the monochromatic configuration
where all nodes have the majority color. Remind that the outline
of the proof is given in Section III. Here, we formalize the
arguments of the provided high-level description. Due to space
limitation the proofs of the technical claims are moved to
Appendix.

Phase H4: The age of the undecideds: We first show that
under some parameter ranges including H4 (and hence when
the number of the undecideds are large enough) the growth of
the bias is exponential.

Claim 6. Let γ be any positive constant and x ∈ C be any
configuration such that s > γ

√
n log n and q > 1

18n. Then, it
holds that s(1 + 1

36 ) < S < 2s, w.h.p.

Lemma 6 (Phase H4). Let x ∈ H4 be a configuration with
a > b. Then, (i) starting from x, the U-Process reaches a
configuration X′ ∈ H6 with a > b within O(log n) rounds,
w.h.p. Moreover, (ii) an initial configuration y ∈ H4 exists such
that the U-Process stays in H4 for Ω(log n) rounds, w.h.p.

Proof: We iteratively apply Claim 6 and Claim 1 and after
t = Θ(log n) rounds we have that either there is a round t′ < t
such that s(Xt′) > 2

3n, or s(Xt) > (1 + 1/36)ts(x) > (1 +
1/36)t. In both cases, the process has reached a configuration
X′ such that s(X′) > 2

3n and q(X′) > n
18 : So X′ belongs

to H6. Since each step of the iteration holds w.h.p. and the
number of steps is O(log n), we easily obtain that the result
holds w.h.p. by a simple application of the Union Bound.

Concerning the second part of the lemma, consider an initial
configuration y such that s(y) = n2/3. By iteratively applying
(the upper bound of) Claim 6 and Claim 1 for t = 1

4 log n
rounds, we have that s(Xt) < 2ts(y) = 2tn2/3 = n1/4n2/3 =
o(n).

Phase H6: The victory of the majority: This is the phase
in which a large bias let the nodes converge to the majority
color within a logarithmic number of rounds. We first prove that
the number of nodes that support the minority color decreases
exponentially fast (Claim 7) and that the bias is preserved round
by round (Claim 8 and Claim 9). Then, when b 6 2

√
n log n,

the undecided nodes start to decrease exponentially fast as
well (Claim 10). At the very end, when there are only few
nodes (i.e., O(

√
n log n)) that do not still support the majority

color, the minority color disappears in few steps and thus
the U-Process converges to majority within O(log n) rounds
(Claim 11).

Claim 7. Let x ∈ C be any configuration such that s > 2
3n

and b > log n then it holds that B 6 b(1− 1
9 ), w.h.p.

In order to iteratively apply the above claim we now show
that, if there are enough undecided nodes, the bias is preserved
round by round until the number of Beta-colored nodes
decreases below 2

√
n log n.

Claim 8. Let x ∈ C be any configuration such that s > 2
3n

and q >
√
n log n. Then it holds that S > 2

3n, w.h.p.

Claim 9. Let x ∈ C be any configuration such that s > 2
3n

and b > 2
√
n log n. Then it holds that Q >

√
n log n, w.h.p.

The three above claims imply that, after O(log n) rounds,
the process reaches a configuration such that s > 2

3n,
q >
√
n log n and b 6 2

√
n log n. The next claim shows that

starting from any such configuration the number of undecided
nodes decrease exponentially fast. Next, we show that if the
process reaches a configuration such that q 6 12

√
n log n and

b 6 2
√
n log n then within few rounds the U-Process converges

to the configuration where all nodes support Alpha.



Claim 10. Let x ∈ C be any configuration such that
12
√
n log n 6 q 6 1

3n and b 6 2
√
n log n it holds that

Q 6 q(1− 1
9 ), w.h.p.

Claim 11. Let γ be any positive constant and let x ∈ C be
any configuration such that q 6 γ

√
n log n and b 6 2

√
n log n

then the U-Process reaches a configuration X′ with a(X′) = n
within O(log n) rounds, w.h.p.

We are now ready to show the following

Lemma 7 (Phase H6). Starting from any configuration x ∈
H6 with a > b, the U-Process ends in the monochromatic
configuration where a = n within O(log n) rounds, w.h.p.

Proof: Let us first assume that s(x) > n − 5
√
n log n

and q(x) 6
√
n log n. This implies that b(x) 6 2

√
n log n

and thanks to Claim 11 we get that the process end in
the configuration such that a = n within O(log n) rounds.
Otherwise s(x) > 2

3n and q >
√
n log n. Then, starting from

x, we iteratively apply Claim 7 together with Claim 8 and Claim
9, and we get that the process reaches a configuration X′ such
that s(X′) > 2

3n, q(X′) >
√
n log n and b(X′) 6 2

√
n log n in

O(log n) rounds. Then we iteratively apply Claim 10 together
with Claim 7 (if b < log n we cannot apply Claim 7 in order
to show that B does not overtake 2

√
n log n but we can get the

claim with a simple application of the Markov inequality) and
Claim 8 and we get that the process reaches a configuration
X′′ such that q(X′′) 6 12

√
n log n and b(X′′) 6 2

√
n log n in

O(log n) rounds and now we apply Claim 11 and the process
reaches the monochromatic configuration w.h.p. Since every
step of the iterations holds w.h.p. and the number of steps is
O(log n), we easily obtain the thesis by a simple application
of the Union Bound.

Phases H5 and H7: Starters: We show that if the process
is in a configuration where the number of the undecided nodes
is relatively small with respect to the bias, then in the next
round the number of the undecided nodes becomes large while
the bias does not decrease too much, w.h.p. This essentially
implies that if the process starts in H5 then in the next round
the process moves to a configuration belonging to H5 or H6

(Lemma 8), while if it starts in H7 then in the next round it
moves to H4 or H5 or H6 (Lemma 9).

Claim 12. Let γ, ε be any two positive constants and x ∈ C
any configuration such that s > γ

√
n log n then it holds that

S > (γ − ε)
√
n log n, w.h.p.

The above claim together with Claim 1 immediately implies
the following

Lemma 8 (Phase H5). Starting from any configuration x ∈ H5

with a > b, the U-Process reaches a configuration X′ ∈ (H4 ∪
H6) with a > b in one round, w.h.p.

Concerning phase H7, we have

Lemma 9 (Phase H7). Starting from any configuration x ∈ H7

with a > b, the U-Process reaches a configuration X′ ∈ (H4 ∪
H5 ∪H6) with a > b in one round, w.h.p.

Proof: Note that Claim 12 implies that in the next round
the process does not enter in H1, H2 or H3 w.h.p. The
hypothesis that s 6 n− 5

√
n log n and q 6

√
n log n implies

that b > 2
√
n log n and thus we can apply the Claim 9 and

get that the process leaves H7 because of the grown of the
undecided nodes.

VI. CONCLUSIONS

We provided a full analysis of the U-Dynamics in the parallel
PULL model for the binary case showing that the resulting
process converges quickly, regardless of the initial configuration.
Besides giving tight bounds on the convergence time, our set of
results well-clarifies the main aspects of the process evolution
and the crucial role of the undecided nodes in each phase of
this evolution.

An interesting open question is that of considering the same
process in the multi-color case and to derive bounds on the
time required to break symmetry from balanced configurations,
as well.

Finally, we believe our analysis can be suitably adapted in
order to show that the U-Dynamics can efficiently stabilize
to a valid consensus regime even in presence of a dynamic
adversary that can change the state of a subset of nodes of size
o(
√
n). So, borrowing the notions from [3], [6], we should be

able to show the U-Dynamics is a stabilizing almost-consensus
protocol in presence of an o(

√
n)-dynamic adversary.
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APPENDIX

A. Chernoff Bound moltiplicative form

Let X1, . . . , Xn be independent 0-1 random variables. Let
X =

∑n
i=1Xi and µ 6 E [X] 6 µ′. Then, for any 0 < δ < 1

the following Chernoff bounds hold:

P (X > (1 + δ)µ) 6 e−µδ
2/3. (8)

P (X 6 (1− δ)µ) 6 e−µ
′δ2/2. (9)

B. Chernoff Bound additive form

Let X1, . . . , Xn be independent 0-1 random variables. Let
X =

∑n
i=1Xi and µ = E [X]. Then the following Chernoff

bounds hold:

for any 0 < λ < n− µ

P (X 6 µ− λ) 6 e−2λ2/n, (10)

for any 0 < λ < µ

P (X > µ+ λ) 6 e−2λ2/n. (11)

C. Reverse Chernoff Bound

Let X1, . . . , Xn be independent 0-1 random variables, X =∑n
i=1Xi, µ = E [X] and δ ∈ (0, 1/2]. Assuming that µ 6 1

2n
and δ2µ > 3 then the following bounds hold:

P (X > (1 + δ)µ) > e−9δ2µ, (12)

P (X 6 (1− δ)µ) > e−9δ2µ. (13)

D. Proof of Claim 1

From (4) we get

E [Q|Xt = x] >
n

3
− s2

2n
>

1

3
n− 2

9
n =

1

9
n .

By applying the additive form of the Chernoff Bound (see (10))
to the random variable Q we easily get the claim, i.e.,

P

(
Q 6

1

18
n

)
= P

(
Q 6

1

18
n+

1

18
n− 1

18
n

)
6 P

(
Q 6 E [Q]− 1

18
n

)
6 e−2n2/182n

= e−Θ(n) .

E. Proof of Claim 2

We recall (1) and we get

P (A|Xt = x) = a(
a+ 2q

n
)

> a(
n−q

2 + 2q

n
) (14)

= a(
1

2
+

3q

2n
) > a(

1

2
+ 3) = a

7

2
,

where in (14) we used that a = n−q+s
2 > n−q

2 . We apply
the multiplicative form of the Chernoff Bound ((9) in Appendix
A) with δ = 1

2

P

(
A 6 a

7

2
(1− 1

2
)

)
6 exp−a

7
2

1
4/3

6 exp− logn 7
2

1
4/3

=
1

nΘ(1)
.

Thus w.h.p.

A > a
7

4
= a(1 +

3

4
).

F. Proof of Lemma 3

Thanks to Claim 3 we can say that a > log n within
O(log n). Then we can iteratively apply the Claim 2 in order
to say that within O(log n) rounds the number of undecided
nodes has to drop below 1

2n and the process enters in H2.
Note that can also happen that the process directly enters in
H4 because in these rounds the bias is increased. Thanks to
Claim 1 the process does not enter into H3 or H5. Since every
step of the iterations holds w.h.p. and the number of steps is
O(log n), we easily obtain the thesis by a simple application
of the Union Bound.

G. Sketch of proof of Lemma 4

For any round t and any Xt = x ∈ Ω such that f(x) > h
√
n

we define t as a successful round if f(Xt+1) > (1 + ε)f(Xt).
Let’s assume that each time a round is not successful then
the Markov Chain restarts from any state x ∈ Ω such that
f(x) > h

√
n. We define define the random variable Zt =

f(Xt)√
n

. Then we define a potential function Yt = exp(m− Zt)
and we compute its expectation at the next round:

E [Yt+1|Zt = zt] 6 P (f(Xt+1) < (1 + ε)zt) e
m

+ P (f(Xt+1) > (1 + ε)) em−(1+ε)zt

6 e−c2z
2
t · em + 1 · em−(1+ε)zt

= em−c2z
2
t + em−xt−εzt

6 em−3c2zt + em−xt−εzt

= em−zt(e−(3c2−1)zt + e−εzt)

= yt(e
−(3c2−1)h + e−εh),



=
yt
e
,

where we used that zt > h, z2
t > 3zt and that (e−(3c−1)h +

e−εh) 6 (e−2 + e−2) < e−1. Note that if YT 6 1 then
XT > m. Thanks to the Markov inequality:

P (YT > 1) 6
E [YT ]

1
6

E [YT−1]

e
6 · · · 6 E [Y0]

et
6
em

eT
.

Choosing T = m+ log n 6 2 log n we have that w.h.p. in
T rounds the process has reached the target value.

We assumed that at each not successful round the Markov
Chain restarts from a state x ∈ Ω such that f(x) > h

√
n. In the

case the Markov Chain instead jumps in the set of states such
that f(x) < h

√
n we need to count also the rounds needed to

let the Markov Chain exit from such set.
We know that, starting from a balanced configuration the

number of rounds needed to reach a configuration such that
f(x) > h

√
n is dominated by a geometric variable of parameter

c1. In the worst case each couple of rounds in our sequence
{Yt}t can be interval by a geometric random variable. How
many can be these random variables? At most the number
T = 2 log n needed to have that Yt 6 1 w.h.p. We know that
the sum of O(log n) random geometric random variable is
O(log n) w.h.p.(Chernoff bound for geometric variable, see
Theorem 3.7 in [13]).

H. Proof of Claim 5

The upper bound is a consequence of Claim 1. In order to
show that Q 6 1

2n w.h.p., from (4) we get

E [Q |Xt = x] =
2q2 + (n− q)2 − s2

2n
6

2q2 + (n− q)2

2n
.

Note that if 1
18n 6 q 6 1

2n then the maximum of 2q2 +
(n− q)2 is in q = 1

18n. Then we get

2q2 + (n− q)2

2n
6

2
182n

2 + (n− 1
18n)2

2n

=
n2( 2

182 + 172

182 )

2n

=
2 + 172

2 · 182
n

=
291

648
n

= (
1

2
− 66

648
)n.

By using the additive form of the Chernoff bound (see (11)
in Appendix B) with λ = 66

648n, we obtain

P

(
Q >

1

2
n

)
6 P (Q > E [Q|Xt = x]− λ)

6 e−2·662n2/6482n

= e−Θ(n).

I. Proof of Claim 6

Recall that S = A−B. In order to show that S > s(1 + 1
36 )

w.h.p., we provide two independent bounds to the values of A
and B, respectively. We use the additive form of the Chernoff
bound ((10) and (11) in Appendix B) with λ = γ

√
n logn
72 .

Hence, we have

P (A 6 E [A|Xt = x]− λ) 6 e−2λ2/n

= e−2γ2 logn/722

=
1

nΘ(1)
,

and

P (B > E [B|Xt = x] + λ) 6 e−2λ2/n

= e−2γ2 logn/722

=
1

nΘ(1)
.

Then w.h.p.

S > E [A|Xt = x]− λ− [B|Xt = x]− λ
= E [A−B|Xt = x]− 2λ

= E [S|Xt = x]− 2λ

= s(1 +
q

n
)− γ

√
n log n

36

> s(1 +
q

n
)− s/36

> s(1 +
1

18
− 1

36
)

= s(1 +
1

36
).

We now show that S < 2s w.h.p. using similar arguments as
above. Once again, we use the additive form of the Chernoff
bound with λ = γ

√
n logn
4 . We have

P (A > E [A|Xt = x] + λ) 6 e−2λ2/n

= e−2γ2 logn/16

=
1

nΘ(1)
,

and

P (B 6 E [B|Xt = x]− λ) 6 e−2λ2/n

= e−2γ2 logn/16

=
1

nΘ(1)
.

As a consequence, we have that w.h.p.

S < E [A|Xt = x] + λ− [B|Xt = x] + λ

= E [A−B|Xt = x] + 2λ

= E [S|Xt = x] + 2λ



= s(1 +
q

n
) +

γ

2

√
n log n

< s(1 +
1

2
) +

1

2
s

= 2s.

J. Proof of Claim 7

From (5), since s > 2
3n, we have that

E [B |Xt = x] = b

(
1− 2s+ 3b− n

n

)
6 b

(
1− 2s− n

n

)
6 b

(
1−

4
3n− n
n

)
= b

(
1− 1

3

)
.

Thus, we apply the multiplicative form of the Chernoff Bound
((8) in Appendix A) with δ = 1

3 , and we obtain

P

(
B > (1 + δ)

(
1− 1

3

)
b

)
6 e−b(1−

1
3 )δ2/3

6 e− logn(1− 1
3 )δ2/3

=
1

nΘ(1)
.

As a consequence, we have that w.h.p.

B 6 b(1 + δ)

(
1− 1

3

)
= b

(
1 +

1

3

)(
1− 1

3

)
= b

(
1− 1

9

)
.

K. Proof of Claim 8

We recall that S = A−B, thus we provide two independent
bounds to the values of A and B respectively. We use the
additive form of the Chernoff bound ((10) and (11) in Appendix
B) with λ = ε

√
n logn

2 ). We have

P (A 6 E [A|Xt = x]− λ) 6 e−2λ2/n

= eε
2 logn/2

=
1

nΘ(1)
,

and

P (B > E [B|Xt = x] + λ) 6 e−2λ2/n

= eε
2 logn/2

=
1

nΘ(1)
.

Then it holds that, w.h.p.

S > E [A|Xt = x]− λ−E [B|Xt = x]− λ
= E [A−B|Xt = x]− 2λ

= E [S|Xt = x]− 2λ

= s(1 +
q

n
)− ε

√
n log n

> s+
2
√
n log n

3
− ε
√
n log n

> s

L. Proof of Claim 9

The number of Beta-colored nodes is atleast 2
√
n log n

and each node has probability at least 2/3 to pick a Alpha-
colored node. Thus E [Q] > 4

3

√
n log n and we get the claim

by a simple application of the additive form of the Chernoff
bound.

M. Proof of Claim 10

From (2), we have:

E [Q|Xt = x] =
q2 + 2ab

n
6
q2 + 4n

√
n log n

n

= q(
q

n
+

4
√
n log n

q
)

6 q(
1

3
+

1

3
)

= q(1− 1

3
).

Thus we apply the multiplicative form of the Chernoff Bound
(8 in Appendix A) with δ = 1

3

P

(
Q > (1 + δ)

(
1− 1

3

)
q

)
6 e−q(1−

1
3 )δ2/3

6 e− logn(1− 1
3 )δ2/3

=
1

nΘ(1)
,

and thus we get that, w.h.p.

Q 6

(
1 +

1

3

)(
1− 1

3

)
q = q

(
1− 1

9

)
.

N. Proof of Claim 11

We first show that in one round the number nodes that
support the color Beta becomes logarithmic and the number
of undecided nodes does not increase.

E [B |Xt = x] = b

(
b+ 2q

n

)



6 2
√
n log n

(
2
√
n log n+ 2γ

√
n log n

n

)
= 4(γ + 1) log n.

It is immediate concentrate using the multiplicative form
of the Chernoff bound and get that B < 8(γ + 1) log n w.h.p.
We now show that the number of the undecided nodes is still
O(
√
n log n). Indeed

E [Q |Xt = x] =
q2

n
+

2ab

n

6 γ2 log n+ 4
√
n log n.

Then using the additive form of the chernoff bound we
get that Q 6 5

√
n log n w.h.p. In the next round, w.h.p., no

undecided node picks a node colored of Beta or viceversa
so we can conclude that there are no nodes supporting Beta
left (and it easy to show that there is at least one supporter
of Alpha w.h.p.). From now on, the stochastic process is
equivalent to a classic spreading process via PULL operations,
and thus, in the O(log n) rounds, all the nodes will support
Alpha w.h.p.

O. Proof of Claim 12

We recall that S = A−B, thus we provide two independent
bounds to the values of A and B respectively. We use the
additive form of the Chernoff bound ((10) and (11) in Appendix
B) with λ = ε

√
n logn

2 ). We have

P (A 6 E [A|Xt = x]− λ) 6 e−2λ2/n = eε
2 logn/2 =

1

nΘ(1)
,

and

P (B > E [B|Xt = x] + λ) 6 e−2λ2/n = eε
2 logn/2 =

1

nΘ(1)
.

Then it holds that, w.h.p.

S > E [A|Xt = x]− λ−E [B|Xt = x]− λ
= E [A−B|Xt = x]− 2λ

= E [S|Xt = x]− 2λ

= s(1 +
q

n
)− ε

√
n log n

> s− ε
√
n log n

> γ
√
n log n− ε

√
n log n

= (γ − ε)
√
n log n.

P. Tightness of Theorem 2

Claim 13. An initial configuration exists with |s| = Θ(
√
n)

such that the process converges to the minority color with
constant probability

Let us consider the configuration x such that q(x) =
n/3, a(x) = n/3 +

√
n and b(x) = n/3 −

√
n. We prove

that in one round there is constant probability that the bias
becomes zero or negative. After that, by simple symmetry
argument, we get the claim.

We define Aq, Bq, Qq the random variables counting the
nodes that was undecided in the configuration x, and in the next
round are respectively colored of Alpha, Beta or undecided.
Similarly Aa (Bb) counts the nodes that was supporting the
color Alpha (Beta) in the configuration x and that are still
support the same color in the next round.

Since it is impossible that a node supporting a color in one
round could support the other color in the next round, it holds
that A = Aq +Aa and B = Bq +Bb. Note that, among these
random variables, only Aq and Bq are not independents. Thus.
for any positive constant δ, it holds that

P (S 6 0) = P (B > A)

= P
(
Bq +Bb > Aq +Aa

)
> P

(
Bq > Aq , Bb > n/3 + δ

√
n , Aa 6 n/3 + δ

√
n
)

= P (Bq > Aq) ·P
(
Bb > n/3 + δ

√
n
)

·P
(
Aa 6 n/3 + δ

√
n
)
.

With a simple application of the Reverse Chernoff bound
(see (12)) we get that P

(
Bb > n/3 + δ

√
n
)

is atleast constant,
whereas the fact that P (Aa 6 n/3 + δ

√
n) is atleast constant

is an immediate consequence of the additive form of the
Chernoff Bound (see (11)).

Thus we need to show that also P (Bq > Aq) is atleast
constant. Note that the distribution Bq conditioned to the
event Qq = k is a binomial distribution with parameters (n3 −
k, b(x)

a(x)+b(x) ) and with expectation E [Bq |Qq = k,Xt = x] =

(n3 − k)/2− (n3 − k)/(6
√
n). Thus we get

P (Bq > Aq) =

n/3∑
k=1

P (Bq > Aq |Qq = k)P (Qq = k)

>

n/2∑
k=n/4

P (Bq > Aq |Qq = k)P (Qq = k)

=

n/2∑
k=n/4

P
(
Bq > (

n

3
− k)/2) |Qq = k

)
P (Qq = k)

=

n/2∑
k=n/4

P
(
Bq > E[Bb |Qq=k]

+( n
3−k)/(6

√
n)
|Qq = k

)
P (Qq = k)

=

n/2∑
k=n/4

P

(
Bq >

E[Bb |Qq=k]
·(1+ 1

3
√

n−1
)
|Qq = k

)
P (Qq = k)

>
n/2∑
k=n/4

exp

(
−9

(3
√
n− 1)2

·E
[
Bb |Qq = k

])
P (Qq = k)

(15)

>
n/2∑
k=n/4

exp

(
−9n

(3
√
n− 1)2

)
P (Qq = k)



= exp

(
−9n

(3
√
n− 1)2

) n/2∑
k=n/4

P (Qq = k)

= Θ(1)

n/2∑
k=n/4

P (Qq = k)

= Θ(1)(1− eΘ(n)) (16)

Where in (15) we used the reverse Chernoff bound (see (12))
and in (16) we used that E [Qq] ≈ n

3 and the additive form of
the Chernoff bound.
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